Nature Communications ( IF 15.7 ) Pub Date : 2023-04-21 , DOI: 10.1038/s41467-023-37725-0 Nikhil Harle , Oles Shtanko , Ramis Movassagh
|
|
Electrons are indivisible elementary particles, yet paradoxically a collection of them can act as a fraction of a single electron, exhibiting exotic and useful properties. One such collective excitation, known as a topological Majorana mode, is naturally stable against perturbations, such as unwanted local noise, and can thereby robustly store quantum information. As such, Majorana modes serve as the basic primitive of topological quantum computing, providing resilience to errors. However, their demonstration on quantum hardware has remained elusive. Here, we demonstrate a verifiable identification and braiding of topological Majorana modes using a superconducting quantum processor as a quantum simulator. By simulating fermions on a one-dimensional lattice subject to a periodic drive, we confirm the existence of Majorana modes localized at the edges, and distinguish them from other trivial modes. To simulate a basic logical operation of topological quantum computing known as braiding, we propose a non-adiabatic technique, whose implementation reveals correct braiding statistics in our experiments. This work could further be used to study topological models of matter using circuit-based simulations, and shows that long-sought quantum phenomena can be realized by anyone in cloud-run quantum simulations, whereby accelerating fundamental discoveries in quantum science and technology.
中文翻译:
在可编程量子模拟器上观察和编织拓扑马约拉纳模式
电子是不可分割的基本粒子,但矛盾的是,它们的集合可以充当单个电子的一小部分,表现出奇异而有用的特性。一种这样的集体激发,称为拓扑马约拉纳模式,自然稳定地抵抗扰动,例如不需要的局部噪声,因此可以稳健地存储量子信息。因此,马约拉纳模式充当拓扑量子计算的基本原语,提供对错误的恢复能力。然而,他们在量子硬件上的演示仍然难以捉摸。在这里,我们展示了使用超导量子处理器作为量子模拟器的拓扑马约拉纳模式的可验证识别和编织。通过模拟受周期性驱动的一维晶格上的费米子,我们确认了位于边缘的 Majorana 模式的存在,并将它们与其他微不足道的模式区分开来。为了模拟称为编织的拓扑量子计算的基本逻辑运算,我们提出了一种非绝热技术,其实施揭示了我们实验中正确的编织统计。这项工作可进一步用于使用基于电路的模拟研究物质的拓扑模型,并表明任何人都可以在云运行的量子模拟中实现长期寻求的量子现象,从而加速量子科学和技术的基础发现。其实施揭示了我们实验中正确的编织统计数据。这项工作可进一步用于使用基于电路的模拟研究物质的拓扑模型,并表明任何人都可以在云运行的量子模拟中实现长期寻求的量子现象,从而加速量子科学和技术的基础发现。其实施揭示了我们实验中正确的编织统计数据。这项工作可进一步用于使用基于电路的模拟研究物质的拓扑模型,并表明任何人都可以在云运行的量子模拟中实现长期寻求的量子现象,从而加速量子科学和技术的基础发现。




















































京公网安备 11010802027423号