当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rice tapetum differentiation is sensitive to downregulation of OsUCH3, a ubiquitin C-terminal hydrolase
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2023-04-14 , DOI: 10.1111/pbi.14052
Dong-Hui Wang 1 , Na Liu 1 , Si-Da Ye 1 , Zhi-Shan Chen 1 , Ya-Nan Lin 1 , Zhao-Hui Liu 1 , Zhi-Hong Xu 1 , Shu-Nong Bai 1
Affiliation  

The tapetum is a special tissue within the stamen that supplies nutrients to support microspore differentiation. Many genes have been identified to function in tapetum differentiation (Astrand et al., 2021). Ubiquitin C-terminal hydrolase (UCH) is a type of cysteine protease involved in protein deubiquitination process (Mevissen and Komander, 2017) and plays roles in gonadal transformation and spermatogenesis in animals (Luo et al., 2009; Kwon et al,. 2004; Wang et al., 2006). OsUCH3 (Os02g43760) was highly expressed in early rice stamen cells (Chen et al., 2015), the OsUCH3 expression was first observed in all cells of anther primordium and then gradually concentrated into the germ cells and tapetum cells, and OsUCH3 protein exhibits stronger ubiquitin C-terminal hydrolase enzymatic activity (Wang et al., 2018). These data suggested that OsUCH3 is likely associated with stamen development.

To explore whether OsUCH3 plays roles in rice stamen development, we constructed transgenic lines to down-regulate OsUCH3 expression through RNAi vector as described previously with primers (ccACTAGTATGGAGGATGCTCATTCC and TcGGATCCCACAACTTTCGAAAGAGC) (Liu et al., 2005) (Figure 1a–g) and the OsUCH3-targeting CRISPR-Cas9 mutant lines (Figure 1h). CRISPR-Cas9 osuch3 mutant lines exhibited the same male-sterile phenotype as OsUCH3R.

Details are in the caption following the image
Figure 1
Open in figure viewerPowerPoint
Suppression of OsUCH3 impairs rice stamen development by DNA degradation during tapetum differentiation. (a–e) Comparison of a wild-type (WT) plant and OsUCH3R RNAi transgenic plants. (a) bar = 10 cm, (b) bar = 1 cm, (c) bar = 1 mm, (d) bar = 200 μm, (e) bar-50 um (f), WT (up) and OsUCH3R (down) pollen grains were stained by I2-KI solution. Bar = 50 μm. (f), Quantitative RT-PCR analysis of rice WT and OsUCH3R. Total RNA was prepared from third mature leaves (Leaf), 7-day-old root meristem (Root), leaf primordia (SAM) and florets. Results are average values obtained from three independent experiments. (g) Statistical analysis of pollen grains of the WT and OsUCH3R transgenic plants. (h), Schematic diagram of the CRISPR constructs designed for OsUCH3 and comparison of WT and osuch3 mutant plants. The target sequence of construct osuch3 mutant located in the first exon by CRISPR and detected using sequencing. Arrowheads indicate mutation site. Florets bar = 500 μm, pollen grains bar = 50 μm. (i), The reciprocal cross between WT and OsUCH3R lines and the recovery ratio of seed setting. Bar = 1 cm. (j), Transverse, semithin sectional analysis of anther development in the wild-type and OsUCH3R RNAi transgenic plants. Bar = 50 μm. (k-p), The sterile pollen of the OsUCH3R RNAi transgenic line exhibits abnormal tapetal degeneration through transmission electron microscopy (TEM). Bar = 5 μm. (q–x), DNA fragmentation analysis in the anthers of the wild-type and OsUCH3R RNAi transgenic plants using the TUNEL assay. The nuclei were stained with propidium iodide, indicated by red fluorescence, while the green fluorescence represents TUNEL-positive nucleus staining. Bar = 50 μm. (y), Expression analysis of tapetum-related genes and SAM-related genes in OsUCH3R RNAi transgenic plants compared with the wild type. Total RNA was prepared from the SAM and panicles of stages S3, S5, S7, S9 and S11 and subjected to RT-qPCR analysis. Results are average values obtained from three independent experiments. The RT-qPCR results are presented as relative expression to GAPDH. Student's paired t-test: *P < 0.05, **P < 0.01. Chl, chloroplast; E, epidermis; En, endothecium; M, middle layer; MMC, mother microspore cells; Msp, microspores; Nu, nucleus; PMC, pollen mother cell; T, tapetal layer; Tds, tetrads.

In observation of the overall morphology, there was no significant difference at vegetable development (Figure 1a). However, low seed setting rate was observed in the RNAi lines (Figure 1b) and CRISPR-Cas9 osuch3 mutant (Figure 1h). Alexander staining showed that OsUCH3R lines had abnormal pollen (Figure 1d) with the latter being indicated by the significant reduction in pollen grain number (Figure 1e, g). The RT-qPCR results revealed that OsUCH3 expression levels were significantly reduced in OsUCH3R transgenic rice (Figure 1f).

To examine whether OsUCH3 affected stamen development, we pollinated OsUCH3R pistils with wild-type pollen grains, which rescued the sterility of OsUCH3R. The result suggested that the low seed setting rate resulted mainly from down-expression of OsUCH3 (Figure 1i). Morphological analysis revealed abnormal tapetum differentiation and locule collapse were observed in the OsUCH3R lines from stage 5 (S5) through 12 (S12) (Figure 1j). This observation suggested that the downregulation of OsUCH3 caused a defect in the tapetum differentiation and stamen development.

In contrast to the degeneration of the tapetum that was observed in the WT from stages 7 (S7) to 9 (S9) (Figure 1k–m), the tapetum in the OsUCH3R lines was not properly degenerated during these stages (Figure 1n–p) as revealed by transmission electron microscopy (TEM) analysis. In addition, TEM observations revealed that the secondary cell walls of the endothecium cells were thinner in the OsUCH3R lines than in the wild type (Figure 1p, red arrowhead). We found green fluorescence in wild-type tapetal cells from stages 7 to 9 (Figure 1q-t) using the terminal deoxynucleotidyl transferase-mediated TdT-mediated dUTP Nick-End Labeling (TUNEL) assay (Chen et al., 2018). No such TUNEL signals were detected in OsUCH3R tapetal cells during the same developmental period (Figure 1u–x). These results suggested that DNA degradation during tapetum differentiation after stage 7 was abnormal in OsUCH3R.

Numerous genes were known being involved in tapetum differentiation (Chen et al., 2018). GAMYB4 was up-regulated while the expression of YY1, OsCP1 and UDT1 exhibited no change in the OsUCH3R lines (Figure 1y). OsUCH3 is lower expressed in shoot tips and leaf primordia. While no differential expression of SAM genes OsWOX3, the expression of OSH1 and OsWUS was significantly decreased in the OsUCH3R lines (Figure 1y). These changes demonstrated the link between abnormal tapetum differentiation in the OsUCH3R lines with the changes in the expression levels of known tapetum genes.

The phenotypes we found in OsUCH3R lines and CRISPR mutants demonstrated that tapetal differentiation is sensitive to the change of expression level of OsUCH3 and protein deubiquitination is an importance factor for proper tapetum differentiation. This finding provided a new opportunity not only in deciphering the regulatory network of tapetum differentiation at protein level, but in manipulating male sterility for agricultural applications.

Accession numbers

Sequence data from this article can be found in the GenBank/EMBL data library.



中文翻译:

水稻绒毡层分化对 OsUCH3(一种泛素 C 末端水解酶)的下调敏感

绒毡层是雄蕊内的特殊组织,提供营养以支持小孢子分化。许多基因已被鉴定在绒毡层分化中发挥作用(Astrand等人,  2021)。泛素C末端水解酶(UCH)是一种参与蛋白质去泛素化过程的半胱氨酸蛋白酶(Mevissen和Komander,  2017),在动物性腺转化和精子发生中发挥作用(Luo,  2009;Kwon,  2004 ) ;王等人,  2006)。OsUCH3 (Os02g43760) 在早期水稻雄蕊细胞中高表达 (Chen et alOsUCH3蛋白首先在花药原基的所有细胞中观察到表达,然后逐渐集中到生殖细胞和绒毡层细胞中,且OsUCH3蛋白表现出更强的泛素C端水解酶活性(Wang et al .2018 )  。这些数据表明OsUCH3可能与雄蕊发育有关。

为了探索OsUCH3是否在水稻雄蕊发育中发挥作用,我们构建了转基因品系,通过 RNAi 载体下调OsUCH3 的表达,如前所述,使用引物(ccACTAGTATGGAGGATGCTCATTCC 和 TcGGATCCCACAACTTTCGAAAGAGC)(Liu,  2005)(图 1a-g)和OsUCH3靶向 CRISPR-Cas9 突变株系(图 1h)。CRISPR-Cas9 osuch3突变系表现出与OsUCH3R相同的雄性不育表型。

详细信息位于图片后面的标题中
图1
在图查看器中打开微软幻灯片软件
OsUCH3的抑制会在绒毡层分化过程中通过 DNA 降解损害水稻雄蕊的发育。(a-e) 野生型 (WT) 植物和OsUCH3R RNAi 转基因植物的比较。(a) bar = 10 cm,(b) bar = 1 cm,(c) bar = 1 mm,(d) bar = 200 μm,(e) bar-50 um (f),WT(上)和OsUCH3R(下)花粉粒用 I 2 -KI 溶液染色。条形 = 50 μm。(f),水稻WT和Os UCH3R的定量RT-PCR分析。从第三成熟叶(Leaf)、7天大的根分生组织(Root)、叶原基(SAM)和小花制备总RNA。结果是从三个独立实验获得的平均值。(g) WT和OsUCH3R花粉粒的统计分析转基因植物。(h),为OsUCH3设计的 CRISPR 构建体的示意图以及 WT 和osuch3突变植物的比较。构建osuch3突变体的靶序列通过CRISPR定位于第一个外显子并通过测序检测。箭头表示突变位点。小花条 = 500 μm,花粉粒条 = 50 μm。(i),WT和OsUCH3R品系之间的互交和结实率。条形 = 1 厘米。(j),野生型和OsUCH3R RNAi 转基因植物花药发育的横向半薄切片分析。条形 = 50 μm。(kp), OsUCH3R的不育花粉通过透射电子显微镜 (TEM),RNAi 转基因系表现出异常的绒毡层变性。条=5微米。(q–x),使用 TUNEL 测定对野生型和OsUCH3R RNAi 转基因植物花药中的 DNA 片段进行分析。细胞核用碘化丙啶染色,显示红色荧光,而绿色荧光代表TUNEL阳性细胞核染色。条形 = 50 μm。(y),与野生型相比,OsUCH3R RNAi转基因植物中绒毡层相关基因和SAM相关基因的表达分析。从 S3、S5、S7、S9 和 S11 阶段的 SAM 和圆锥花序制备总 RNA,并进行 RT-qPCR 分析。结果是从三个独立实验获得的平均值。RT-qPCR 结果以相对表达量的形式呈现谷胱甘肽脱氢酶。学生配对t检验:* P  < 0.05,** P  < 0.01。Chl,叶绿体;E、表皮;En,内壁;M,中层;MMC,小孢子母细胞;Msp,小孢子;Nu,核;PMC,花粉母细胞;T,绒毡层;Tds,四分体。

从整体形态观察来看,蔬菜发育没有显着差异(图1a)。然而,在 RNAi 系(图 1b)和 CRISPR-Cas9 osuch3突变体(图 1h)中观察到结籽率较低。亚历山大染色显示OsUCH3R系具有异常花粉(图 1d),后者表现为花粉粒数量显着减少(图 1e,g)。RT-qPCR 结果显示OsUCH3R转基因水稻中OsUCH3表达水平显着降低(图 1f)。

为了检查OsUCH3是否影响雄蕊发育,我们用野生型花粉粒给OsUCH3R雌蕊授粉,这挽救了OsUCH3R的不育性。结果表明,结籽率低主要是由于OsUCH3的表达下调所致(图 1i)。形态学分析显示,从第 5 阶段 (S5) 到第 12 阶段 (S12),OsUCH3R系中观察到异常绒毡层分化和小室塌陷(图 1j)。这一观察结果表明OsUCH3的下调导致绒毡层分化和雄蕊发育缺陷。

与在 WT 中从阶段 7 (S7) 到 9 (S9) 观察到的绒毡层退化相反(图 1k-m),OsUCH3R 系中的绒毡层在这些阶段没有适当退化(图 1n- p) )如透射电子显微镜(TEM)分析所示。此外,TEM 观察表明, OsUCH3R系的内皮细胞次生细胞壁比野生型更薄(图 1p,红色箭头)。我们使用末端脱氧核苷酸转移酶介导的T dT 介导的 d U TP Nick - E nd L标签 (TUNEL) 测定法,在第 7 至 9 阶段的野生型绒毡层细胞中发现了绿色荧光(图 1q-t)( Chen等人,  2018)。在同一发育时期,在OsUCH3R绒毡层细胞中未检测到此类 TUNEL 信号(图 1u-x)。这些结果表明,OsUCH3R中第 7 阶段后绒毡层分化过程中的 DNA 降解是异常的。

已知许多基因参与绒毡层分化(Chen等人,  2018)。GAMYB4上调,而YY1OsCP1UDT1的表达在OsUCH3R系中没有表现出变化(图 1y)。OsUCH3在茎尖和叶原基中表达较低。虽然 SAM 基因OsWOX3没有差异表达,但OsUCH3R系中OSH1OsWUS的表达显着降低(图 1y)。这些变化证明了OsUCH3R中异常绒毡层分化之间的联系与已知绒毡层基因表达水平的变化相符。

我们在OsUCH3R系和 CRISPR 突变体中发现的表型表明,绒毡层分化对OsUCH3表达水平的变化敏感,并且蛋白质去泛素化是绒毡层正常分化的重要因素。这一发现不仅为破译蛋白质水平上绒毡层分化的调控网络提供了新的机会,而且为农业应用中操纵雄性不育提供了新的机会。

入藏号

本文的序列数据可以在 GenBank/EMBL 数据库中找到。

更新日期:2023-04-14
down
wechat
bug