当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys
Nature Materials ( IF 41.2 ) Pub Date : 2023-04-10 , DOI: 10.1038/s41563-023-01517-0
Liang Wang 1, 2 , Jun Ding 3 , Songshen Chen 1 , Ke Jin 1, 4 , Qiuhong Zhang 1 , Jiaxiang Cui 1 , Benpeng Wang 1 , Bing Chen 5 , Tianyi Li 6 , Yang Ren 7, 8 , Shijian Zheng 9 , Kaisheng Ming 9 , Wenjun Lu 10 , Junhua Hou 10 , Gang Sha 11 , Jun Liang 2 , Lu Wang 1 , Yunfei Xue 1 , En Ma 3
Affiliation  

Uniform tensile ductility (UTD) is crucial for the forming/machining capabilities of structural materials. Normally, planar-slip induced narrow deformation bands localize the plastic strains and hence hamper UTD, particularly in body-centred-cubic (bcc) multi-principal element high-entropy alloys (HEAs), which generally exhibit early necking (UTD < 5%). Here we demonstrate a strategy to tailor the planar-slip bands in a Ti-Zr-V-Nb-Al bcc HEA, achieving a 25% UTD together with nearly 50% elongation-to-failure (approaching a ductile elemental metal), while offering gigapascal yield strength. The HEA composition is designed not only to enhance the B2-like local chemical order (LCO), seeding sites to disperse planar slip, but also to generate excess lattice distortion upon deformation-induced LCO destruction, which promotes elastic strains and dislocation debris to cause dynamic hardening. This encourages second-generation planar-slip bands to branch out from first-generation bands, effectively spreading the plastic flow to permeate the sample volume. Moreover, the profuse bands frequently intersect to sustain adequate work-hardening rate (WHR) to large strains. Our strategy showcases the tuning of plastic flow dynamics that turns an otherwise-undesirable deformation mode to our advantage, enabling an unusual synergy of yield strength and UTD for bcc HEAs.



中文翻译:

剪裁平面滑移以在体心立方多主元素合金中实现纯金属的延展性

均匀拉伸延展性 (UTD) 对于结构材料的成型/加工能力至关重要。通常,平面滑移引起的窄变形带会使塑性应变局域化,从而阻碍 UTD,特别是在体心立方 (bcc) 多主元高熵合金 (HEA) 中,通常表现出早期颈缩 (UTD < 5%) )。在这里,我们展示了一种在 Ti-Zr-V-Nb-Al bcc HEA 中定制平面滑移带的策略,实现了 25% UTD 以及近 50% 的断裂伸长率(接近延展性元素金属),同时提供千兆帕的屈服强度。HEA 成分的设计不仅可以增强类 B2 局部化学有序 (LCO)、晶种位点以分散平面滑移,而且还可以在变形引起的 LCO 破坏时产生过度的晶格畸变,从而促进弹性应变和位错碎片,从而导致动态硬化。这促使第二代平面滑移带从第一代带中分支出来,有效地传播塑料流以渗透样品体积。此外,丰富的带经常相交,以维持足够的加工硬化率(WHR)以应对大应变。我们的策略展示了塑性流动动力学的调整,将原本不需要的变形模式转变为我们的优势,从而使 bcc HEA 的屈服强度和 UTD 产生不寻常的协同作用。

更新日期:2023-04-11
down
wechat
bug