当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pressure Driven Rapid Reconfigurable Liquid Metal Patterning
Micromachines ( IF 3.0 ) Pub Date : 2023-03-23 , DOI: 10.3390/mi14040717
Bingxin Liu 1, 2 , Peng Qin 1, 2 , Mingyang Liu 3 , Wei Liu 3 , Pan Zhang 1, 2 , Zi Ye 1 , Zhongshan Deng 1, 2 , Zhenming Li 3 , Lin Gui 1, 2
Affiliation  

This paper proposes a method for pressure driven rapid reconfigurable liquid metal patterning. A sandwich structure of “pattern—film—cavity” is designed to complete this function. Both sides of the highly elastic polymer film are bonded with two PDMS slabs. One PDMS slab has microchannels patterned on the surface. The other PDMS slab has a large cavity on its surface for liquid metal storage. These two PDMS slabs are bonded together, face to face, with the polymer film in the middle. In order to control the distribution of the liquid metal in the microfluidic chip, the elastic film will deform under the high pressure of the working medium in the microchannels and then extrude the liquid metal into different patterns in the cavity. This paper studies the factors of liquid metal patterning in detail, including external control conditions, such as the type and pressure of the working medium and the critical dimensions of the chip structure. Moreover, both a single-pattern and a double-pattern chip are fabricated in this paper, which can form or reconfigure the liquid metal pattern within 800 ms. Based on the above methods, reconfigurable antennas of two frequencies are designed and fabricated. Meanwhile, their performance is simulated and tested by simulation and vector network tests. The operating frequencies of the two antennas are respectively significantly switching between 4.66 GHz and 9.97 GHz.

中文翻译:

压力驱动快速可重构液态金属图案化

本文提出了一种压力驱动的快速可重构液态金属图案化方法。设计了“图案—薄膜—型腔”的三明治结构来完成这一功能。高弹性聚合物薄膜的两面均与两块PDMS板粘合。一块 PDMS 板的表面具有微通道图案。另一个 PDMS 板的表面有一个大空腔,用于储存液态金属。这两个 PDMS 板面对面粘合在一起,聚合物薄膜位于中间。为了控制液态金属在微流控芯片中的分布,弹性薄膜在微通道内工作介质的高压作用下会发生变形,然后将液态金属在腔体内挤压成不同的图案。本文详细研究了液态金属图案形成的因素,包括外部控制条件、例如工作介质的类型和压力以及切屑结构的关键尺寸。此外,本文还制作了单图案和双图案芯片,可以在800 ms内形成或重新配置液态金属图案。基于上述方法,设计并制作了两种频率的可重构天线。同时通过仿真和矢量网络测试对其性能进行了仿真和测试。两根天线的工作频率分别在4.66 GHz和9.97 GHz之间显着切换。设计并制作了两个频率的可重构天线。同时通过仿真和矢量网络测试对其性能进行了仿真和测试。两根天线的工作频率分别在4.66 GHz和9.97 GHz之间显着切换。设计并制作了两个频率的可重构天线。同时通过仿真和矢量网络测试对其性能进行了仿真和测试。两根天线的工作频率分别在4.66 GHz和9.97 GHz之间显着切换。
更新日期:2023-03-23
down
wechat
bug