当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multimaterial 3D printed self-locking thick-panel origami metamaterials
Nature Communications ( IF 14.7 ) Pub Date : 2023-03-23 , DOI: 10.1038/s41467-023-37343-w
Haitao Ye 1, 2, 3 , Qingjiang Liu 1, 2 , Jianxiang Cheng 1, 2 , Honggeng Li 1, 2 , Bingcong Jian 1, 2 , Rong Wang 1, 2 , Zechu Sun 1, 2 , Yang Lu 3, 4, 5 , Qi Ge 1, 2
Affiliation  

Thick-panel origami has shown great potential in engineering applications. However, the thick-panel origami created by current design methods cannot be readily adopted to structural applications due to the inefficient manufacturing methods. Here, we report a design and manufacturing strategy for creating thick-panel origami structures with excellent foldability and capability of withstanding cyclic loading. We directly print thick-panel origami through a single fused deposition modeling (FDM) multimaterial 3D printer following a wrapping-based fabrication strategy where the rigid panels are wrapped and connected by highly stretchable soft parts. Through stacking two thick-panel origami panels into a predetermined configuration, we develop a 3D self-locking thick-panel origami structure that deforms by following a push-to-pull mode enabling the origami structure to support a load over 11000 times of its own weight and sustain more than 100 cycles of 40% compressive strain. After optimizing geometric parameters through a self-built theoretical model, we demonstrate that the mechanical response of the self-locking thick-panel origami structure is highly programmable, and such multi-layer origami structure can have a substantially improved impact energy absorption for various structural applications.



中文翻译:

多材料 3D 打印自锁厚板折纸超材料

厚板折纸在工程应用中显示出巨大的潜力。然而,由于制造方法效率低下,目前设计方法创建的厚板折纸无法轻易应用于结构应用。在这里,我们报告了一种设计和制造策略,用于创建具有出色折叠性和承受循环载荷能力的厚板折纸结构。我们遵循基于包裹的制造策略,通过单个熔融沉积建模 (FDM) 多材料 3D 打印机直接打印厚板折纸,其中刚性面板由高度可拉伸的软部件包裹和连接。通过将两块厚板折纸面板堆叠成预定的配置,我们开发了一种 3D 自锁厚板折纸结构,该结构通过遵循推拉模式变形,使折纸结构能够支撑超过其自身重量 11000 倍的负载,并承受超过 100 次 40% 压缩应变循环。通过自建理论模型优化几何参数后,我们证明了自锁厚板折纸结构的机械响应是高度可编程的,并且这种多层折纸结构可以显着改善各种结构的冲击能量吸收应用程序。

更新日期:2023-03-23
down
wechat
bug