当前位置: X-MOL 学术Mil. Med. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adhesive cryogel particles for bridging confined and irregular tissue defects
Military Medical Research ( IF 16.7 ) Pub Date : 2023-03-23 , DOI: 10.1186/s40779-023-00451-1
Yao-Ting Xue 1, 2, 3 , Ming-Yu Chen 4 , Jia-Sheng Cao 4 , Lei Wang 1, 2, 3 , Jia-Hao Hu 4 , Si-Yang Li 1, 2, 3 , Ji-Liang Shen 4 , Xin-Ge Li 1, 2, 3 , Kai-Hang Zhang 1, 2, 3 , Shu-Qiang Hao 2 , Sarun Juengpanich 4 , Si-Bo Cheng 5 , Tuck-Whye Wong 3, 6 , Xu-Xu Yang 1, 2, 3 , Tie-Feng Li 1, 2, 3 , Xiu-Jun Cai 4 , Wei Yang 1, 2, 3
Affiliation  

Reconstruction of damaged tissues requires both surface hemostasis and tissue bridging. Tissues with damage resulting from physical trauma or surgical treatments may have arbitrary surface topographies, making tissue bridging challenging. This study proposes a tissue adhesive in the form of adhesive cryogel particles (ACPs) made from chitosan, acrylic acid, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The adhesion performance was examined by the 180-degree peel test to a collection of tissues including porcine heart, intestine, liver, muscle, and stomach. Cytotoxicity of ACPs was evaluated by cell proliferation of human normal liver cells (LO2) and human intestinal epithelial cells (Caco-2). The degree of inflammation and biodegradability were examined in dorsal subcutaneous rat models. The ability of ACPs to bridge irregular tissue defects was assessed using porcine heart, liver, and kidney as the ex vivo models. Furthermore, a model of repairing liver rupture in rats and an intestinal anastomosis in rabbits were established to verify the effectiveness, biocompatibility, and applicability in clinical surgery. ACPs are applicable to confined and irregular tissue defects, such as deep herringbone grooves in the parenchyma organs and annular sections in the cavernous organs. ACPs formed tough adhesion between tissues [(670.9 ± 50.1) J/m2 for the heart, (607.6 ± 30.0) J/m2 for the intestine, (473.7 ± 37.0) J/m2 for the liver, (186.1 ± 13.3) J/m2 for muscle, and (579.3 ± 32.3) J/m2 for the stomach]. ACPs showed considerable cytocompatibility in vitro study, with a high level of cell viability for 3 d [(98.8 ± 1.2) % for LO2 and (98.3 ± 1.6) % for Caco-2]. It has comparable inflammation repair in a ruptured rat liver (P = 0.58 compared with suture closure), the same with intestinal anastomosis in rabbits (P = 0.40 compared with suture anastomosis). Additionally, ACPs-based intestinal anastomosis (less than 30 s) was remarkably faster than the conventional suturing process (more than 10 min). When ACPs degrade after surgery, the tissues heal across the adhesion interface. ACPs are promising as the adhesive for clinical operations and battlefield rescue, with the capability to bridge irregular tissue defects rapidly.

中文翻译:

用于桥接受限和不规则组织缺陷的粘性冷冻凝胶颗粒

受损组织的重建需要表面止血和组织桥接。因物理创伤或手术治疗而受损的组织可能具有任意表面形貌,使组织桥接具有挑战性。本研究提出了一种由壳聚糖、丙烯酸、1-乙基-3-(3-二甲基氨基丙基)碳二亚胺 (EDC) 和 N-羟基琥珀酰亚胺 (NHS) 制成的冷冻凝胶颗粒 (ACP) 形式的组织粘合剂。通过对包括猪心脏、肠、肝、肌肉和胃在内的一组组织进行180度剥离试验来检查粘附性能。通过人正常肝细胞 (LO2) 和人肠上皮细胞 (Caco-2) 的细胞增殖来评估 ACP 的细胞毒性。在背部皮下大鼠模型中检查了炎症和生物降解性的程度。使用猪心脏、肝脏和肾脏作为离体模型评估了 ACP 弥合不规则组织缺陷的能力。进一步建立大鼠肝破裂修复模型和兔肠吻合模型,验证其有效性、生物相容性和临床手术适用性。ACP适用于局限性、不规则的组织缺损,如实质器官深人字形沟、海绵体器官环状切面。ACPs在组织间形成坚韧的粘附[心脏(670.9±50.1)J/m2,肠道(607.6±30.0)J/m2,肝脏(473.7±37.0)J/m2,(186.1±13.3)J/ m2 为肌肉,(579.3 ± 32.3) J/m2 为胃]。ACPs 在体外研究中显示出相当大的细胞相容性,具有高水平的细胞活力 3 天 [(98.8 ± 1.2) % LO2 和 (98. Caco-2] 的 3 ± 1.6) %]。它在破裂的大鼠肝脏中具有可比的炎症修复(与缝合闭合相比 P = 0.58),与兔肠吻合术相同(与缝合吻合相比 P = 0.40)。此外,基于 ACP 的肠吻合术(不到 30 秒)明显快于传统缝合过程(超过 10 分钟)。当 ACP 在手术后降解时,组织会在粘连界面愈合。ACP 有望作为临床手术和战场救援的粘合剂,具有快速弥合不规则组织缺损的能力。基于 ACP 的肠吻合术(少于 30 秒)明显快于传统缝合过程(超过 10 分钟)。当 ACP 在手术后降解时,组织会在粘连界面愈合。ACP 有望作为临床手术和战场救援的粘合剂,具有快速弥合不规则组织缺损的能力。基于 ACP 的肠吻合术(少于 30 秒)明显快于传统缝合过程(超过 10 分钟)。当 ACP 在手术后降解时,组织会在粘连界面愈合。ACP 有望作为临床手术和战场救援的粘合剂,具有快速弥合不规则组织缺损的能力。
更新日期:2023-03-23
down
wechat
bug