当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Layer jamming: Modeling and experimental validation
International Journal of Mechanical Sciences ( IF 7.3 ) Pub Date : 2023-03-21 , DOI: 10.1016/j.ijmecsci.2023.108325
Fabio Caruso , Giacomo Mantriota , Vincenzo Moramarco , Giulio Reina

The ability to control and tune the stiffness of soft structures is one of the most important challenges in soft robotics. This is crucial in applications that require both compliance and the ability to withstand high forces. Among the various techniques, layer jamming represents a promising solution. Despite the increasing interest, the existing analytical models are not able to describe the behavior of these structures beyond the initial deformation phase. In this work, we propose an analytical model that predicts the behavior of these structures in all deformation phases, overcoming the limitations of existing models. Our previous approach is extended by explicitly taking into account the increase in stiffness due to the overhangs of the structure outside the constraining supports. We conduct experimental tests and finite element simulations to validate the predictions of the proposed model. The experimental and finite element results are in good agreement with theoretical predictions, especially considering that no fitting parameters have been used. Additionally, we analyze the effect of the main design parameters, including the number of layers, vacuum pressure and coefficient of friction, as well as the energy dissipated by friction during a load–unload cycle. We believe that this work represents a significant step forward in understanding the complex mechanisms underlying the mechanics of layer jamming structures that could be useful in helping researchers design more advanced variable stiffness applications in soft robotics.



中文翻译:

层干扰:建模和实验验证

控制和调整软结构刚度的能力是软机器人最重要的挑战之一。这对于既需要顺应性又需要承受高强度的能力的应用来说至关重要。在各种技术中,层干扰代表了一种有前途的解决方案。尽管人们越来越感兴趣,但现有的分析模型无法描述这些结构在初始变形阶段之后的行为。在这项工作中,我们提出了一个分析模型来预测这些结构在所有变形阶段的行为,克服了现有模型的局限性。我们之前的方法通过明确考虑由于约束支撑外的结构悬垂导致的刚度增加而得到扩展。我们进行实验测试和有限元模拟来验证所提出模型的预测。实验和有限元结果与理论预测非常吻合,特别是考虑到没有使用拟合参数。此外,我们分析了主要设计参数的影响,包括层数、真空压力和摩擦系数,以及加载-卸载循环期间摩擦耗散的能量。我们相信,这项工作代表着在理解层干扰结构力学背后的复杂机制方面向前迈出了重要一步,这可能有助于研究人员在软体机器人中设计更先进的可变刚度应用。实验和有限元结果与理论预测非常吻合,特别是考虑到没有使用拟合参数。此外,我们分析了主要设计参数的影响,包括层数、真空压力和摩擦系数,以及加载-卸载循环期间摩擦耗散的能量。我们相信,这项工作代表着在理解层干扰结构力学背后的复杂机制方面向前迈出了重要一步,这可能有助于研究人员在软体机器人中设计更先进的可变刚度应用。实验和有限元结果与理论预测非常吻合,特别是考虑到没有使用拟合参数。此外,我们分析了主要设计参数的影响,包括层数、真空压力和摩擦系数,以及加载-卸载循环期间摩擦耗散的能量。我们相信,这项工作代表着在理解层干扰结构力学背后的复杂机制方面向前迈出了重要一步,这可能有助于研究人员在软体机器人中设计更先进的可变刚度应用。包括层数、真空压力和摩擦系数,以及加载-卸载循环过程中摩擦耗散的能量。我们相信,这项工作代表着在理解层干扰结构力学背后的复杂机制方面向前迈出了重要一步,这可能有助于研究人员在软体机器人中设计更先进的可变刚度应用。包括层数、真空压力和摩擦系数,以及加载-卸载循环过程中摩擦耗散的能量。我们相信,这项工作代表着在理解层干扰结构力学背后的复杂机制方面向前迈出了重要一步,这可能有助于研究人员在软体机器人中设计更先进的可变刚度应用。

更新日期:2023-03-21
down
wechat
bug