当前位置: X-MOL 学术J. Clim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of Arctic Sea Ice Interannual Variation on Nonmonsoonal Winter Precipitation over the Eurasian Continent
Journal of Climate ( IF 4.8 ) Pub Date : 2023-06-19 , DOI: 10.1175/jcli-d-22-0634.1
QiFeng Qian 1 , XiaoJing Jia 2 , RenGuang Wu 1 , Min Wang 1
Affiliation  

Abstract The present study analyzes the impact of interannual variation in autumn (September–November) Arctic sea ice concentration (SIC) on early winter (November–January) precipitation over nonmonsoonal Eurasian (NME) regions based on both observations and numerical model experiments. An energy budget analysis shows that negative autumn SIC anomalies in the Beaufort–Chukchi–East Siberian Seas (BCES) induce heating in the overlying atmospheric column, which excites a Rossby wave that propagates from the BCES through the Atlantic Ocean to the mid- and high-latitude Eurasian continent. This Rossby wave obtains energy from the mean flow by both baroclinic and barotropic energy conversions. In comparison, the baroclinic energy conversion is more important than the barotropic energy conversion. The low-level anomalous cyclone and anticyclone of the Rossby wave dominate the eastern North Atlantic Ocean–southern Europe and western Russia, respectively. Anomalous westerly wind along the south flank of the anomalous cyclone transports moisture from the North Atlantic Ocean to the continent, resulting in a water vapor flux convergence and positive precipitation anomaly over southern Europe in early winter. Pronounced anomalous northerly winds in the eastern part of the western Russian anticyclone cause negative precipitation anomalies over vast regions of central Asia and the west Siberian plain in early winter. The Rossby wave ray tracing experiment and numerical sensitivity experiments support the above BCES SIC–NME precipitation connection.

中文翻译:

北极海冰年际变化对欧亚大陆非季风冬季降水的影响

摘要:本研究基于观测和数值模型实验,分析了秋季(9月至11月)北极海冰浓度(SIC)的年际变化对非季风欧亚(NME)地区初冬(11月至1月)降水的影响。能量收支分析表明,波弗特-楚科奇-东西伯利亚海(BCES)秋季 SIC 负异常会引起上覆大气柱的加热,从而激发罗斯比波,从 BCES 穿过大西洋传播到中高层。 - 欧亚大陆纬度。罗斯贝波通过斜压和正压能量转换从平均流中获取能量。相比之下,斜​​压能量转换比正压能量转换更重要。罗斯比波的低层异常气旋和反气旋分别控制着北大西洋东部、欧洲南部和俄罗斯西部。异常气旋南侧的异常西风将北大西洋的水汽输送到大陆,导致初冬南欧水汽通量汇聚和正降水异常。初冬,俄罗斯西部反气旋东部地区出现明显偏北风,导致中亚大部地区和西西伯利亚平原出现负降水异常。Rossby波射线追踪实验和数值灵敏度实验支持了上述BCES SIC-NME降水联系。异常气旋南侧的异常西风将北大西洋的水汽输送到大陆,导致初冬南欧水汽通量汇聚和正降水异常。初冬,俄罗斯西部反气旋东部地区出现明显偏北风,导致中亚大部地区和西西伯利亚平原出现负降水异常。Rossby波射线追踪实验和数值灵敏度实验支持了上述BCES SIC-NME降水联系。异常气旋南侧的异常西风将北大西洋的水汽输送到大陆,导致初冬南欧水汽通量汇聚和正降水异常。初冬,俄罗斯西部反气旋东部地区出现明显偏北风,导致中亚大部地区和西西伯利亚平原出现负降水异常。Rossby波射线追踪实验和数值灵敏度实验支持了上述BCES SIC-NME降水联系。初冬,俄罗斯西部反气旋东部地区出现明显偏北风,导致中亚大部地区和西西伯利亚平原出现负降水异常。Rossby波射线追踪实验和数值灵敏度实验支持了上述BCES SIC-NME降水联系。初冬,俄罗斯西部反气旋东部地区出现明显偏北风,导致中亚大部地区和西西伯利亚平原出现负降水异常。Rossby波射线追踪实验和数值灵敏度实验支持了上述BCES SIC-NME降水联系。
更新日期:2023-06-20
down
wechat
bug