当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From high-entropy alloys to high-entropy ceramics: The radiation-resistant highly concentrated refractory carbide (CrNbTaTiW)C
Acta Materialia ( IF 8.3 ) Pub Date : 2023-03-12 , DOI: 10.1016/j.actamat.2023.118856
Matheus A. Tunes , Stefan Fritze , Barbara Osinger , Patrick Willenshofer , Andrew M. Alvarado , Enrique Martinez , Ashok S. Menon , Petter Ström , Graeme Greaves , Erik Lewin , Ulf Jansson , Stefan Pogatscher , Tarik A. Saleh , Vladimir M. Vishnyakov , Osman El-Atwani

High-entropy materials represent the state-of-the-art on the alloy design strategy for future applications in extreme environments. Recent data indicates that high-entropy alloys (HEAs) exhibit outstanding radiation resistance in face of existing diluted alloy counterparts due to suppressed damage formation and evolution. An extension of the HEA concept is presented in this paper towards the synthesis and characterization of novel high-entropy ceramics as emergent materials for application in environments where energetic particle irradiation is a major concern. A novel carbide within the quinary refractory system CrNbTaTiW has been synthesized using magnetron-sputtering. The material exhibited nanocrystalline grains, single-phase crystal structure and C content around 50 at.%. Heavy-ion irradiation with in-situ Transmission Electron Microscopy was used to assess the irradiation response of the new high-entropy carbide (HEC) at 573 K and a comparison with the HEA within the system is made. No displacement damage effects appear within the microstructures of both HEA and HEC up to a dose of 10 displacements-per-atom. Surprisingly, the HEC has not amorphized under the investigated conditions. Xe was implanted in both materials and bubbles nucleated, but smaller sizes compared with conventional nuclear materials shedding light they are potential candidates for use in nuclear energy.



中文翻译:

从高熵合金到高熵陶瓷:耐辐射高浓缩难熔碳化物(CrNbTaTiW)C

高熵材料代表了未来在极端环境中应用的合金设计策略的最新水平。最近的数据表明,由于抑制了损伤的形成和演化,高熵合金 (HEA) 与现有的稀释合金对应物相比表现出出色的抗辐射性。本文介绍了 HEA 概念的扩展,用于合成和表征新型高熵陶瓷作为新兴材料,用于高能粒子辐射是主要关注点的环境中。使用磁控溅射合成了五元​​耐火系统 CrNbTaTiW 中的新型碳化物。该材料表现出纳米晶粒、单相晶体结构和约 50 at.% 的 C 含量。原位透射电子显微镜重离子辐照用于评估新型高熵碳化物 (HEC) 在 573 K 下的辐照响应,并与系统内的 HEA 进行了比较。在 HEA 和 HEC 的微观结构中,当剂量达到每个原子 10 个位移时,都不会出现位移损伤效应。令人惊讶的是,HEC 在所研究的条件下并未发生非晶化。Xe 被植入材料和成核气泡中,但与传统核材料相比尺寸更小,这表明它们是用于核能的潜在候选者。在 HEA 和 HEC 的微观结构中,当剂量达到每个原子 10 个位移时,都不会出现位移损伤效应。令人惊讶的是,HEC 在所研究的条件下并未发生非晶化。Xe 被植入材料和成核气泡中,但与传统核材料相比尺寸更小,这表明它们是用于核能的潜在候选者。在 HEA 和 HEC 的微观结构中,当剂量达到每个原子 10 个位移时,都不会出现位移损伤效应。令人惊讶的是,HEC 在所研究的条件下并未发生非晶化。Xe 被植入材料和成核气泡中,但与传统核材料相比尺寸更小,这表明它们是用于核能的潜在候选者。

更新日期:2023-03-12
down
wechat
bug