当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Seismicity induced by geological CO2 storage: A review
Earth-Science Reviews ( IF 12.1 ) Pub Date : 2023-03-11 , DOI: 10.1016/j.earscirev.2023.104369
Yuxiang Cheng , Wenna Liu , Tianfu Xu , Yanjun Zhang , Xinwen Zhang , Yunyan Xing , Bo Feng , Yi Xia

Geological storage is a valuable strategy for reducing CO2 emissions to the atmosphere, although seismicity induced by CO2 injection can be a serious hazard that also becomes an obstacle to the development of CO2 geological storage. The most important challenge in this field is fault systems that are difficult to detect and that have complex activation mechanisms, making the evaluation, prediction and control of CO2 injection induced seismicity extremely difficult. It is also challenging to determine the triggering mechanism of injection induced seismicity. To promote the solution of these problems, we first review the experience and lessons learned from recent induced seismicity monitored in CO2 geological storage (CGS) projects, and summarize the mechanisms that can be used to analyze CO2 injection induced seismicity, including critical pressure theory, Biot's incremental strain theory, rate- and state-dependent frictional theory and fracture potential theory. We then discuss the theory and modeling of thermo-hydro-mechanical-chemical (THMC) coupling in CGS-induced seismicity. Knowledge of THMC coupling is an efficient way to improve the prediction of fault activation and seismic activity and enables characterization of pore pressure perturbation, temperature changes, and stress and geochemical effects. Through THMC simulation, we can more accurately characterize the change process of stress field, analyze and speculate the triggering and spatio-temporal evolution of induced earthquakes. We also summarize the advantages and disadvantages of maximum magnitude prediction based on statistical and physical models. The statistical method is easy to use, but ignores the physical characteristics of the reservoir. Although physical method overcomes this deficiency, obtaining sufficient modeling input parameters is always an challenging work. Finally, we analyze the challenges involved in the seismicity forecasting, including the quantification of stress state, the identification and characterization of complex fault system, the seismic mitigation injection scheme design, and reasonable seismic risk analysis model selection. This paper focuses on the scientific function of THMC coupling in the studies of CO2 injection induced seismicity, so as to provide reference and guidance for the researches on the mechanism analysis and forecasting of such induced seismicity.



中文翻译:

地质 CO2 封存引起的地震活动:综述

地质封存是减少CO 2大气排放的重要策略,但CO 2注入引起的地震活动可能是一种严重的危害,也成为CO 2地质封存发展的障碍。该领域最重要的挑战是难以检测且具有复杂激活机制的断层系统,这使得CO 2注入诱发地震活动的评估、预测和控制变得极其困难。确定注入诱发地震活动的触发机制也具有挑战性。为推动这些问题的解决,首先回顾近期CO 2诱发地震监测的经验教训地质封存 (CGS) 项目,并总结可用于分析 CO 2的机制注入诱发地震活动,包括临界压力理论、Biot 的增量应变理论、速率和状态相关的摩擦理论和断裂势理论。然后,我们讨论了 CGS 诱发地震活动中热-水-机械-化学 (THMC) 耦合的理论和建模。了解 THMC 耦合是改进断层活动和地震活动预测的有效方法,并且能够表征孔隙压力扰动、温度变化以及应力和地球化学效应。通过THMC模拟,可以更准确地表征应力场的变化过程,分析和推测诱发地震的触发和时空演化。我们还总结了基于统计和物理模型的最大幅度预测的优点和缺点。统计方法使用方便,但忽略了储层的物性特征。虽然物理方法克服了这一不足,但获得足够的建模输入参数始终是一项具有挑战性的工作。最后,我们分析了地震活动性预测所涉及的挑战,包括应力状态的量化、复杂断层系统的识别和表征、减震注入方案的设计以及合理的地震风险分析模型的选择。本文着重阐述THMC偶联在CO研究中的科学作用 我们分析了地震活动性预测中涉及的挑战,包括应力状态的量化、复杂断层系统的识别和表征、减震注入方案设计以及合理的地震风险分析模型选择。本文着重阐述THMC偶联在CO研究中的科学作用 我们分析了地震活动性预测中涉及的挑战,包括应力状态的量化、复杂断层系统的识别和表征、减震注入方案设计以及合理的地震风险分析模型选择。本文着重阐述THMC偶联在CO研究中的科学作用2注入诱发地震活动,从而为此类诱发地震活动机理分析和预测研究提供参考和指导。

更新日期:2023-03-16
down
wechat
bug