当前位置: X-MOL 学术Sensors › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Deformation Behaviors of the Levitation Electromagnets of High-Speed Maglev Vehicle Negotiating a Sharp Horizontal Curve.
Sensors ( IF 3.4 ) Pub Date : 2023-03-03 , DOI: 10.3390/s23052785
Qingsong Yu 1, 2 , Xiaoqing Li 2 , Qing Shao 2 , Tian Han 2 , Chunfa Zhao 3 , Feng He 3
Affiliation  

The elastic deformation of the levitation electromagnet (LM) of the high-speed maglev vehicle brings uneven levitation gaps and displacement differences between measured gap signals and the real gap in the middle of the LM, and then reduces dynamic performances of the electromagnetic levitation unit. However, most of the published literature has paid little attention to the dynamic deformation of the LM under complex line conditions. In this paper, considering the flexibility of the LM and the levitation bogie, a rigid-flexible coupled dynamic model is established to simulate deformation behaviors of the LMs of the maglev vehicle passing through the 650 m radius horizontal curve. Simulated results indicate that the deflection deformation direction of the same LM on the front transition curve is always opposite to that on the rear transition curve. Similarly, the deflection deformation direction of a left LM on the transition curve is opposite to that of the corresponding right LM. Furthermore, deflection deformation amplitudes of the LMs in the middle of the vehicle are always very small (less than 0.2 mm). However, the deflection deformation of the LMs at both ends of the vehicle is considerably large, and the maximum deflection deformation is about 0.86 mm when the vehicle passes at the balance speed. This forms a considerable displacement disturbance for the nominal levitation gap of 10 mm. It is necessary to optimize the supporting structure of the LM at the end of the maglev train in the future.

中文翻译:

高速磁悬浮车辆悬浮电磁铁通过陡峭水平曲线的动态变形行为。

高速磁悬浮车辆悬浮电磁铁(LM)的弹性变形导致悬浮间隙不均匀,测量间隙信号与LM中部实际间隙存在位移差异,进而降低电磁悬浮单元的动态性能。然而,大多数已发表的文献很少关注LM在复杂线路条件下的动态变形。本文在考虑LM和悬浮转向架的柔性的情况下,建立了刚柔耦合动力学模型来模拟磁悬浮车辆LM通过650 m半径水平曲线的变形行为。仿真结果表明,同一LM在前缓和曲线上的偏转变形方向总是与后缓和曲线上的偏转变形方向相反。类似地,缓和曲线上左侧LM的偏转变形方向与相应的右侧LM的偏转变形方向相反。此外,车辆中间的 LM 的偏转变形幅度总是非常小(小于 0.2 毫米)。但是,车辆两端LM的偏转变形较大,车辆以平衡速度通过时的最大偏转变形约为0.86 mm。这对 10 毫米的标称悬浮间隙形成了相当大的位移扰动。未来有必要对磁浮列车末端LM的支撑结构进行优化。车辆中部 LM 的偏转变形幅度总是非常小(小于 0.2 毫米)。但是,车辆两端LM的偏转变形较大,车辆以平衡速度通过时的最大偏转变形约为0.86 mm。这对 10 毫米的标称悬浮间隙形成了相当大的位移扰动。未来有必要对磁浮列车末端LM的支撑结构进行优化。车辆中部 LM 的偏转变形幅度总是非常小(小于 0.2 毫米)。但是,车辆两端LM的偏转变形较大,车辆以平衡速度通过时的最大偏转变形约为0.86 mm。这对 10 毫米的标称悬浮间隙形成了相当大的位移扰动。未来有必要对磁浮列车末端LM的支撑结构进行优化。这对 10 毫米的标称悬浮间隙形成了相当大的位移扰动。未来有必要对磁浮列车末端LM的支撑结构进行优化。这对 10 毫米的标称悬浮间隙形成了相当大的位移扰动。未来有必要对磁浮列车末端LM的支撑结构进行优化。
更新日期:2023-03-03
down
wechat
bug