当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Performance Phototransistor Memory with an Ultrahigh Memory Ratio Conferred Using Hydrogen-Bonded Supramolecular Electrets
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-03-08 , DOI: 10.1021/acsami.2c22501
Yi-Hsun Weng, Yan-Cheng Lin, Jin-Chieh Ho, Wei-Chen Yang, Bi-Hsuan Lin, Cheng-Liang Liu, Wen-Chang Chen

As the research of photonic electronics thrives, the enhanced efficacy from an optic unit cell can considerably improve the performance of an optoelectronic device. In this regard, organic phototransistor memory with a fast programming/readout and a distinguished memory ratio produces an advantageous outlook to fulfill the demand for advanced applications. In this study, a hydrogen-bonded supramolecular electret is introduced into the phototransistor memory, which comprises porphyrin dyes, meso-tetra(4-aminophenyl)porphine, meso-tetra(p-hydroxyphenyl)porphine, and meso-tetra(4-carboxyphenyl)porphine (TCPP), and insulated polymers, poly(4-vinylpyridine) and poly(4-vinylphenol) (PVPh). To combine the optical absorption of porphyrin dyes, dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) is selected as a semiconducting channel. The porphyrin dyes serve as the ambipolar trapping moiety, while the insulated polymers form a barrier to stabilize the trapped charges by forming hydrogen-bonded supramolecules. We find that the hole-trapping capability of the device is determined by the electrostatic potential distribution in the supramolecules, whereas the electron-trapping capability and the surface proton doping originated from hydrogen bonding and interfacial interactions. Among them, PVPh:TCPP with an optimal hydrogen bonding pattern in the supramolecular electret produces the highest memory ratio of 1.12 × 108 over 104 s, which is the highest performance among the reported achievements. Our results suggest that the hydrogen-bonded supramolecular electret can enhance the memory performance by fine-tuning their bond strength and cast light on a potential pathway to future photonic electronics.

中文翻译:

使用氢键超分子驻极体赋予超高存储比的高性能光电晶体管存储器

随着光子电子学研究的蓬勃发展,光学单元电池的增强功效可以显着提高光电设备的性能。在这方面,具有快速编程/读出和出色的存储比的有机光电晶体管存储器产生了有利的前景来满足对高级应用的需求。在这项研究中,将氢键超分子驻极体引入光电晶体管存储器,其包括卟啉染料、内消旋四(4-氨基苯基)卟啉、内消旋四(对羟基苯基)卟啉和内消旋四(4-羧基苯基) )卟啉 (TCPP) 和绝缘聚合物、聚 (4-乙烯基吡啶) 和聚 (4-乙烯基苯酚) (PVPh)。为了结合卟啉染料的光吸收,dinaphtho[2,3- b :2',3'- f]噻吩并[3,2- b ]噻吩 (DNTT) 被选为半导体通道。卟啉染料充当双极性捕获部分,而绝缘聚合物形成屏障,通过形成氢键超分子来稳定捕获的电荷。我们发现器件的空穴捕获能力由超分子中的静电势分布决定,而电子捕获能力和表面质子掺杂源自氢键和界面相互作用。其中,在超分子驻极体中具有最佳氢键模式的 PVPh:TCPP 产生的记忆比最高,为 1.12 × 10 8超过 10 4s,这是报告的成就中最高的表现。我们的研究结果表明,氢键超分子驻极体可以通过微调它们的键强度来增强记忆性能,并为未来光子电子学的潜在途径投光。
更新日期:2023-03-08
down
wechat
bug