当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Additive manufacturing of nickel-based superalloys: A state-of-the-art review on process-structure-defect-property relationship
Progress in Materials Science ( IF 33.6 ) Pub Date : 2023-03-06 , DOI: 10.1016/j.pmatsci.2023.101108
Amir Mostafaei , Reza Ghiaasiaan , I-Ting Ho , Seth Strayer , Kai-Chun Chang , Nima Shamsaei , Shuai Shao , Santanu Paul , An-Chou Yeh , Sammy Tin , Albert C. To

Fusion-based additive manufacturing (AM) has significantly grown to fabricate Nickel-based superalloys with design freedom across multiple length scales. Several phenomena such as feedstock/energy source/melt pool interactions, solidification and phase transformations occur during fusion-based AM processes of Nickel-based superalloys, which determine the ultimate microstructure and mechanical performance of the built parts. In this review, we elaborate a comprehensive discussion on AM Nickel-based superalloys and influential factors including feedstock characteristics (powder morphology, chemistry, contamination, flowability, recycling) and AM processing (parameters, and powder spreading/wall/balling/spattering effects) on their microstructure (micro-segregation, phases formations and grain structures), defect generation (sub-surface/internal defects, microcracks, surface roughness, and residual stress). Furthermore, the mechanical properties of AM Nickel-based superalloys such as tensile, creep and fatigue at room/elevated temperatures are analyzed in accordance with the initial, and post processing effects. Additionally, the commonly utilized modeling approaches in literature to predict the microstructure and mechanical behavior of these alloys are highlighted. Finally, the current challenges and mitigation approaches for future research are identified considering the gaps in the AM Nickel-based superalloys.



中文翻译:

镍基高温合金的增材制造:工艺-结构-缺陷-性能关系的最新综述

基于融合的增材制造 (AM) 已显着发展,可制造具有跨多个长度尺度的设计自由度的镍基高温合金。在镍基高温合金的基于融合的增材制造工艺过程中会发生原料/能源/熔池相互作用、凝固和相变等多种现象,这些现象决定了构建部件的最终微观结构和机械性能。在这篇综述中,我们详细讨论了增材制造镍基高温合金和影响因素,包括原料特性(粉末形态、化学、污染、流动性、回收)和增材制造工艺(参数和粉末扩散/壁/球化/飞溅效应)它们的微观结构(微偏析、相形成和晶粒结构),缺陷产生(亚表面/内部缺陷、微裂纹、表面粗糙度和残余应力)。此外,还根据初始和后处理效果分析了增材制造镍基高温合金在室温/高温下的拉伸、蠕变和疲劳等机械性能。此外,还强调了文献中用于预测这些合金的微观结构和机械行为的常用建模方法。最后,考虑到增材制造镍基高温合金中的差距,确定了未来研究的当前挑战和缓解方法。和后期处理效果。此外,还强调了文献中用于预测这些合金的微观结构和机械行为的常用建模方法。最后,考虑到增材制造镍基高温合金中的差距,确定了未来研究的当前挑战和缓解方法。和后期处理效果。此外,还强调了文献中用于预测这些合金的微观结构和机械行为的常用建模方法。最后,考虑到增材制造镍基高温合金中的差距,确定了未来研究的当前挑战和缓解方法。

更新日期:2023-03-06
down
wechat
bug