当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics
Progress in Materials Science ( IF 33.6 ) Pub Date : 2023-03-03 , DOI: 10.1016/j.pmatsci.2023.101101
J. Schultheiß , G. Picht , J. Wang , Y.A. Genenko , L.Q. Chen , J.E. Daniels , J. Koruza

Ferroelectrics have a spontaneous electrical polarization that is arranged into domains and can be reversed by an externally-applied field. This high versatility makes them useful in enabling components such as capacitors, sensors, and actuators. Key parameters to tune their dielectric, piezoelectric, and electromechanical performance are the domain structure and the dynamic of the domain walls. In fixed compositions, this is often realized by chemical doping. In addition, structural and microstructural parameters, such as grain size, degree of crystallographic texture and porosity play a key role. An important step forward in the field was the fundamental understanding of the link between the local electric and mechanical driving forces and domain wall motion. Here, the impact of crystal structure and microstructure on these driving forces is reviewed and an engineering toolbox is introduced. An overview of advances in the understanding of domain wall motion on the micro- and nanoscale is provided and discussed in terms of the macroscopic functional performance of polycrystalline ferroelectrics/ferroelastics. In addition, a link to theoretical and computational models is established. The review concludes with a discussion about beyond state-of-the-art characterization techniques, new approaches, and future directions toward non-conventionally ordered ferroelectrics for next-generation nanoelectronic and energy-storage applications.



中文翻译:

铁电多晶:通过畴壁动力学进行属性工程的结构和微观结构杠杆

铁电体具有自发的电极化,该电极化排列成域,并且可以通过外部施加的场反转。这种高度通用性使它们可用于启用电容器、传感器和执行器等组件。调整其介电、压电和机电性能的关键参数是畴结构和畴壁的动态。在固定成分中,这通常通过化学掺杂来实现。此外,结构和微观结构参数,如晶粒尺寸、晶体结构程度和孔隙率也起着关键作用。该领域向前迈出的重要一步是对局部电力和机械驱动力与畴壁运动之间联系的基本理解。这里,回顾了晶体结构和微观结构对这些驱动力的影响,并介绍了一个工程工具箱。概述了在微观和纳米尺度上理解畴壁运动的进展,并根据多晶铁电体/铁弹性体的宏观功能性能进行了讨论。此外,还建立了与理论和计算模型的联系。评论最后讨论了超越最先进的表征技术、新方法以及面向下一代纳米电子和储能应用的非常规有序铁电体的未来方向。概述了在微观和纳米尺度上理解畴壁运动的进展,并根据多晶铁电体/铁弹性体的宏观功能性能进行了讨论。此外,还建立了与理论和计算模型的联系。评论最后讨论了超越最先进的表征技术、新方法以及面向下一代纳米电子和储能应用的非常规有序铁电体的未来方向。概述了在微观和纳米尺度上理解畴壁运动的进展,并根据多晶铁电体/铁弹性体的宏观功能性能进行了讨论。此外,还建立了与理论和计算模型的联系。评论最后讨论了超越最先进的表征技术、新方法以及面向下一代纳米电子和储能应用的非常规有序铁电体的未来方向。

更新日期:2023-03-03
down
wechat
bug