当前位置: X-MOL 学术Dalton Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Negative electrodes for supercapacitors with good performance using conductive bismuth-catecholate metal–organic frameworks
Dalton Transactions ( IF 3.5 ) Pub Date : 2023-03-02 , DOI: 10.1039/d3dt00117b
Si Chen 1 , Haoliang Zhang 1 , Xu Li 1 , Yong Liu 1 , Mingyi Zhang 2 , Xiangyang Gao 1 , Xin Chang 2 , Xiangjun Pu 3 , Chunqing He 1
Affiliation  

Metal–organic frameworks (MOFs) have attracted increasing research interest in various fields. Unfortunately, the poor conductivity of most traditional MOFs considerably hinders their application in energy storage. Benefiting from the full charge delocalization in the atomic plane, two-dimensional conductive coordination frameworks achieve good electrochemical performance. In this work, π–π coupling conductive bismuth-catecholate nanobelts with tunable lengths, Bi(HHTP) (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), are synthesized by a simple hydrothermal reaction and their length-dependent electrochemical properties are also investigated. The Bi(HHTP) nanobelts (about 10 μm in length) possess appropriate porosity, numerous redox active sites and good electrical conductivity. Being a negative electrode for supercapacitors, Bi(HHTP) nanobelts display a high specific capacitance of 234.0 F g−1 and good cycling stability of 72% after 1000 cycles. Furthermore, the mechanism of charge storage is interpreted for both battery-type and surface-capacitive behavior. It is believed that the results of this work will help to develop battery-type negative electrode materials with promising electrochemical performance using some newly designed π–π coupling conductive coordination frameworks.

中文翻译:

使用导电邻苯二酚铋金属有机骨架的高性能超级电容器负极

金属有机框架(MOFs)在各个领域引起了越来越多的研究兴趣。不幸的是,大多数传统 MOF 的导电性差极大地阻碍了它们在储能方面的应用。得益于原子平面中的全电荷离域,二维导电配位框架实现了良好的电化学性能。在这项工作中,通过简单的水热反应合成了长度可调的 π-π 耦合导电铋-邻苯二酚纳米带 Bi(HHTP) (HHTP = 2,3,6,7,10,11-六羟基苯并菲),它们的长度-还研究了相关的电化学性质。Bi(HHTP) 纳米带(长约 10 μm)具有适当的孔隙率、大量的氧化还原活性位点和良好的导电性。作为超级电容器的负极,-1和 1000 次循环后 72% 的良好循环稳定性。此外,电荷存储的机制被解释为电池类型和表面电容行为。相信这项工作的结果将有助于使用一些新设计的 π-π 耦合导电配位框架开发具有良好电化学性能的电池型负极材料。
更新日期:2023-03-02
down
wechat
bug