当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sustainable and Tough MXene Hydrogel Based on Interlocked Structure for Multifunctional Sensing
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2023-02-28 , DOI: 10.1021/acssuschemeng.2c06939
Yaqing Liu 1 , Xiaoxiao Lv 1 , Ying Song 1 , Qi Ao 1 , Bolei Yuan 1 , Tingting Huang 1 , Xinglai Tong 1 , Jun Tang 1
Affiliation  

Traditional hydrogel sensors containing MXenes as a conductive substrate will inevitably face the problem of excessive stacking of MXene nanosheets, which limits electron transport, thus reducing conductivity and sensitivity. Moreover, existing MXene hydrogels generally exhibit poor mechanical properties and fragility. In addition, it is necessary to prepare degradable electronic skins for reducing environmental pollution and recycling energy materials─MXene. How to find a balance between mechanical properties and degradation properties is a challenge. In this work, we overcome this challenge by combining a dynamic covalent strategy and establishing a self-modified interlocked structure. A biodegradable physically cross-linked hydrogel (OMDDH─ordered MXene dynamic degradable hydrogel) is constructed, and a highly interconnected three-dimensional (3D) MXene@CS-Pba network is prepared, thus endowing the sensor with excellent conductivity (24 × 10–4 S cm–1). For excellent mechanical properties, dynamic covalent interactions, hydrogen-bonding interactions between the dual networks, and chain entanglement of poly(vinyl alcohol) (PVA) totally build interlocked structures, thus endowing the hydrogel with excellent mechanical strength (1000 kPa). In an acidic environment, the dynamic covalent bond is broken, and the chain entanglement of PVA is also disentangled due to the disruption of the electrostatic equilibrium, resulting in the release of MXene for recycling (recycling conductivity: 22 × 10–4 S cm–1). Undoubtedly, we exhibit a strategy to construct ordered and degradable MXene hydrogels possessing excellent conductivity, high mechanical strength, and degradation performance, which lays the sensors’ wide applications in smart devices.

中文翻译:

基于用于多功能传感的互锁结构的可持续且坚韧的 MXene 水凝胶

传统的含有MXene作为导电基底的水凝胶传感器不可避免地会面临MXene纳米片过度堆叠的问题,从而限制电子传输,从而降低电导率和灵敏度。此外,现有的 MXene 水凝胶通常表现出较差的机械性能和脆性。此外,有必要制备可降解的电子皮肤,以减少环境污染和回收能源材料─MXene。如何在机械性能和降解性能之间找到平衡是一个挑战。在这项工作中,我们通过结合动态共价策略和建立自我修改的互锁结构来克服这一挑战。构建了可生物降解的物理交联水凝胶(OMDDH─有序MXene动态可降解水凝胶),–4 S 厘米–1 )。为了获得优异的机械性能,动态共价相互作用、双网络之间的氢键相互作用以及聚乙烯醇 (PVA) 的链缠结完全构建了互锁结构,从而赋予水凝胶优异的机械强度 (1000 kPa)。在酸性环境中,动态共价键被破坏,PVA的链缠结也因静电平衡被破坏而解开,释放出MXene进行回收(回收电导率:22×10 –4 S cm – 1个). 毫无疑问,我们展示了一种构建有序且可降解的 MXene 水凝胶的策略,该水凝胶具有优异的导电性、高机械强度和降解性能,这奠定了传感器在智能设备中的广泛应用。
更新日期:2023-02-28
down
wechat
bug