当前位置: X-MOL 学术npj Quant. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stabilizing electromagnons in CuO under pressure
npj Quantum Materials ( IF 5.4 ) Pub Date : 2023-02-24 , DOI: 10.1038/s41535-023-00542-1
M. Verseils , P. Hemme , D. Bounoua , R. Cervasio , J-B. Brubach , S. Houver , Y. Gallais , A. Sacuto , D. Colson , T. Iijima , M. Mochizuki , P. Roy , M. Cazayous

Electromagnons (Electroactive spin wave excitations) could prove to be decisive in information technologies but they remain fragile quantum objects, mainly existing at low temperatures. Any future technological application requires overcoming these two limitations. By means of synchrotron radiation infrared spectroscopy performed in the THz energy range and under hydrostatic pressure, we tracked the electromagnon in the cupric oxide CuO, despite its very low absorption intensity. We demonstrate how a low pressure of 3.3 GPa strongly increases the strength of the electromagnon and expands its existence to a large temperature range enhanced by 40 K. Accordingly, these two combined effects make the electromagnon of CuO under pressure a more ductile quantum object. Numerical simulations based on an extended Heisenberg model were combined to the Monte-Carlo technique and spin dynamics to account for the magnetic phase diagram of CuO. They enable to simulate the absorbance response of the CuO electromagnons in the THz range.



中文翻译:

在压力下稳定 CuO 中的电磁铁

电磁铁(电活性自旋波激发)可能被证明在信息技术中具有决定性作用,但它们仍然是脆弱的量子物体,主要存在于低温下。任何未来的技术应用都需要克服这两个限制。通过在太赫兹能量范围和静水压力下进行的同步辐射红外光谱,我们追踪了氧化铜 CuO 中的电磁铁,尽管它的吸收强度非常低。我们展示了 3.3 GPa 的低压如何显着增加电磁铁的强度并将其存在扩展到提高 40 K 的大温度范围。因此,这两种综合效应使 CuO 的电磁铁在压力下成为更具延展性的量子物体。基于扩展的海森堡模型的数值模拟与蒙特卡洛技术和自旋动力学相结合,以解释 CuO 的磁相图。它们能够模拟 CuO 电磁铁在太赫兹范围内的吸光度响应。

更新日期:2023-02-24
down
wechat
bug