当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rapid and Reversible Sensing Performance of Hydrogen-Substituted Graphdiyne
ACS Sensors ( IF 8.2 ) Pub Date : 2023-02-17 , DOI: 10.1021/acssensors.2c02449
Yoon Tae Nam 1 , Hohyung Kang 1 , Sanggyu Chong 1 , Yong-Jae Kim 2 , Wonmoo Lee 1 , Yullim Lee 3 , Jihan Kim 1 , Soo-Yeon Cho 3 , Hee-Tae Jung 1
Affiliation  

The design of new nanomaterials for rapid and reversible detection of molecules in existence is critical for real-world sensing applications. Current nanomaterial libraries such as carbon nanotubes, graphene, MoS2, and MXene are fundamentally limited by their slow detection speed and small signals; thus, the atomic-level material design of molecular transport pathways and active binding sites must be accompanied. Herein, we fully explore the chemical and physical properties of a hydrogen-substituted graphdiyne (HsGDY) for its molecular sensing properties. This new carbon framework comprises reactive sp carbons in acetylenic linkages throughout the 16.3 Å nanopores and allows for detecting target molecules (e.g., H2) with an exceptionally high sensitivity (ΔR/Rb = 542%) and fast response/recovery time (τ90 = 8 s and τ10 = 38 s) even without any postmodification process. It possesses 2 orders of magnitude higher sensing ability than that of existing nanomaterial libraries. We demonstrate that rapid and reversible molecular binding is attributed to the cooperative interaction with adjacent double sp carbon in the layered nanoporous structure of HsGDY. This new class of carbon framework provides fundamental solutions for nanomaterials in reliable sensor applications that accelerate real-world interfacing.

中文翻译:

氢取代石墨炔的快速可逆传感性能

用于快速和可逆地检测现有分子的新型纳米材料的设计对于现实世界的传感应用至关重要。目前的纳米材料库,如碳纳米管、石墨烯、MoS 2和 MXene,从根本上受到检测速度慢和信号小的限制;因此,必须伴随分子传输途径和活性结合位点的原子级材料设计。在此,我们充分探索了氢取代石墨二炔 (HsGDY) 的化学和物理性质及其分子传感特性。这种新的碳骨架包含贯穿 16.3 Å 纳米孔的炔键中的反应性 sp 碳,并允许以极高的灵敏度 (Δ R /R b = 542%) 和快速响应/恢复时间(τ 90 = 8 s 和 τ 10 = 38 s),即使没有任何后修改过程。它具有比现有纳米材料库高 2 个数量级的传感能力。我们证明快速和可逆的分子结合归因于 HsGDY 的层状纳米多孔结构中与相邻双 sp 碳的协同相互作用。这种新型碳框架为纳米材料在可靠的传感器应用中提供了基本解决方案,可加速现实世界的接口。
更新日期:2023-02-17
down
wechat
bug