当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Morphology-Tuned Porous Lithium-Rich Cathode Materials Synthesized via a Solvothermal Approach for Li-Ion Battery Application
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2023-02-14 , DOI: 10.1021/acsaem.2c03971
Yijia Shao 1 , Chaozhong Li 1 , Luoqian Li 1 , Jian Liu 2 , Shijun Liao 1
Affiliation  

Lithium-rich manganese-based layered oxides (LMR) are considered one of the most promising cathode materials for the next generation of high-energy lithium-ion batteries for transportation and energy storage applications. However, the irreversible phase transition from a layered to a spinel structure coupled with the anion redox reaction leads to severe capacity degradation and voltage attenuation, hindering practical applications of LMR materials. In this work, we developed a superior LMR cathode material through a structure engineering strategy via a multisolvent solvothermal method. The resultant LMR cathode, with uniform particle size and porous structure, achieved a specific energy density of ∼933.00 Wh kg–1 (∼267.48 mAh g–1) at 0.2C and a capacity retention of ∼80% after 300 cycles in a voltage range of 2.0–4.8 V at 1C. We further revealed that the excellent performance of our LMR cathode is due to the abundant diffusion pathways, faster lithium-ion diffusion kinetics, and stable crystalline structure. Thus, this study is encouraging and provides an avenue for developing high-energy lithium-ion batteries.

中文翻译:

通过用于锂离子电池应用的溶剂热法合成的形态调整的多孔富锂正极材料

富锂锰基层状氧化物 (LMR) 被认为是用于运输和储能应用的下一代高能锂离子电池最有前途的阴极材料之一。然而,从层状到尖晶石结构的不可逆相变加上阴离子氧化还原反应导致严重的容量退化和电压衰减,阻碍了LMR材料的实际应用。在这项工作中,我们通过多溶剂溶剂热法的结构工程策略开发了一种优质的 LMR 正极材料。所得 LMR 正极具有均匀的粒径和多孔结构,比能量密度为 ~933.00 Wh kg –1 (~267.48 mAh g –1) 在 0.2C 和在 1C 2.0-4.8 V 的电压范围内经过 300 次循环后容量保持率约为 80%。我们进一步揭示,我们的 LMR 阴极的优异性能归因于丰富的扩散途径、更快的锂离子扩散动力学和稳定的晶体结构。因此,这项研究令人鼓舞,并为开发高能锂离子电池提供了途径。
更新日期:2023-02-14
down
wechat
bug