当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerating ultrafast processes in hydrogen-bonded complexes under pressure
Applied Physics Letters ( IF 3.5 ) Pub Date : 2023-02-09 , DOI: 10.1063/5.0130727
Qi Li 1 , Lixia Zhu 1 , Yu Wan 1 , Yongfeng Wan 1 , Jianbo Gao 2 , Hang Yin 1 , Ying Shi 1
Affiliation  

Acceleration of ultrafast processes is vital in hydrogen-bonded coumarin–methanol complexes for improving the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs). The traditional methods expedite ultrafast processes individually related to electron injection in DSSCs, namely, internal conversion (IC) or intermolecular charge transfer (inter-CT), by adjusting molecular topologies. We introduce pressure as an external drive to realize the acceleration of both processes simultaneously without changing the configuration. In the definite hydrogen-bonded complexes, the acceleration of IC and inter-CT processes is visualized by in situ high-pressure femtosecond transient absorption spectroscopy. In liquid-phase methanol, the IC and inter-CT processes are actuated effectively from 150.20 to 59.21 fs and 93.95 to 29.05 ps, respectively. The quickening of both processes is attributed to the enhancement of intermolecular hydrogen bonds under pressure. After the pressure-induced methanol phase transition, the rates of IC and inter-CT processes at 3.67 GPa are increased by 36.42% and 80.55% compared to at 1.00 atm. Our study results open an enlightening avenue for boosting the photoelectric conversion efficiency of DSSCs.

中文翻译:

在压力下加速氢键复合物的超快过程

超快过程的加速对于氢键香豆素-甲醇复合物对于提高染料敏化太阳能电池 (DSSC) 的光电转换效率至关重要。传统方法通过调整分子拓扑来加速与 DSSC 中电子注入相关的超快过程,即内部转换 (IC) 或分子间电荷转移 (inter-CT)。我们引入压力作为外部驱动,在不改变配置的情况下实现两个过程的同时加速。在确定的氢键复合物中,IC 和 CT 间过程的加速通过原位高压飞秒瞬态吸收光谱可视化。在液相甲醇中,IC 和 CT 间过程在 150.20 到 59.21 fs 和 93.95 到 29.05 ps 之间有效启动,分别。这两个过程的加速归因于压力下分子间氢键的增强。在压力诱导的甲醇相变后,IC 和 inter-CT 过程在 3.67 GPa 的速率与 1.00 atm 相比分别增加了 36.42% 和 80.55%。我们的研究结果为提高 DSSC 的光电转换效率开辟了一条启发性的途径。
更新日期:2023-02-09
down
wechat
bug