当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Techno-economic analysis of high-power solid oxide electrolysis cell system
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2023-01-23 , DOI: 10.1016/j.enconman.2023.116704
Tuananh Bui , Dongkeun Lee , Kook Young Ahn , Young Sang Kim

Water electrolysis using solid oxide electrolysis cells is a promising method for hydrogen production because it is highly efficient, clean, and scalable. Recently, a lot of researches focusing on development of high-power stack system have been introduced. However, there are very few studies of economic analysis for this promising system. Consequently, this study proposed 20-kW-scale high-power solid oxide electrolysis cells system configurations, then conducted economic analysis. Especially, the economic context was in South Korea. For comparison, a low-power system with similar design was used as a reference; the levelized cost of hydrogen of each system was calculated based on the revenue requirement method. Furthermore, a sensitivity analysis was also performed to identify how the economic variables affect the hydrogen production cost in a specific context. The results show that a high-power system is superior to a low-power system from an economic perspective. The stack cost is the dominant component of the capital cost, but the electricity cost is the factor that contributes the most to the hydrogen cost. In the first case study, it was found that, if a high-power system can be installed inside a nuclear power plant, the cost of hydrogen produced can reach $3.65/kg when the electricity cost is 3.28¢/kWh and the stack cost is assumed to be $574/kW. The second case study indicated that the hydrogen cost can decrease by 24% if the system is scaled up to a 2-MW scale.



中文翻译:

大功率固体氧化物电解槽系统技术经济分析

使用固体氧化物电解池的水电解是一种很有前途的制氢方法,因为它高效、清洁且可扩展。最近,介绍了很多专注于高功率电堆系统开发的研究。然而,对这种有前途的系统进行经济分析的研究很少。据此,本研究提出了20kW规模的大功率固体氧化物电解槽系统配置,并进行了经济分析。特别是,经济背景是在韩国。为了进行比较,我们使用了具有类似设计的低功耗系统作为参考;采用收入需求法计算各系统氢气平准化成本。此外,还进行了敏感性分析以确定经济变量在特定情况下如何影响制氢成本。结果表明,从经济角度来看,高功率系统优于低功率系统。堆栈成本是资本成本的主要组成部分,但电力成本是对氢气成本贡献最大的因素。在第一个案例研究中发现,如果可以在核电站内部安装大功率系统,当电力成本为 3.28 美分/千瓦时且电堆成本为假设为 574 美元/千瓦。第二个案例研究表明,如果系统扩大到 2 MW 规模,氢气成本可以降低 24%。结果表明,从经济角度来看,高功率系统优于低功率系统。堆栈成本是资本成本的主要组成部分,但电力成本是对氢气成本贡献最大的因素。在第一个案例研究中发现,如果可以在核电站内部安装大功率系统,当电力成本为 3.28 美分/千瓦时且电堆成本为假设为 574 美元/千瓦。第二个案例研究表明,如果系统扩大到 2 MW 规模,氢气成本可以降低 24%。结果表明,从经济角度来看,高功率系统优于低功率系统。堆栈成本是资本成本的主要组成部分,但电力成本是对氢气成本贡献最大的因素。在第一个案例研究中发现,如果可以在核电站内部安装大功率系统,当电力成本为 3.28 美分/千瓦时且电堆成本为假设为 574 美元/千瓦。第二个案例研究表明,如果系统扩大到 2 MW 规模,氢气成本可以降低 24%。如果能在核电站内部安装大功率系统,当电力成本为 3.28 美分/千瓦时,烟囱成本假设为 574 美元/千瓦时,制氢成本可达 3.65 美元/千克。第二个案例研究表明,如果系统扩大到 2 MW 规模,氢气成本可以降低 24%。如果能在核电站内部安装大功率系统,当电力成本为 3.28 美分/千瓦时,烟囱成本假设为 574 美元/千瓦时,制氢成本可达 3.65 美元/千克。第二个案例研究表明,如果系统扩大到 2 MW 规模,氢气成本可以降低 24%。

更新日期:2023-01-24
down
wechat
bug