当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-Time Visualizing Nucleation and Growth of Electrodes for Post-Lithium-Ion Batteries
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2023-01-23 , DOI: 10.1021/acs.accounts.2c00652
Ji Hyun Um 1 , Seong-Jun Kim 1 , Jae-Hwan Hyun 1 , Mihyun Kim 1 , Si-Hwan Lee 1 , Seung-Ho Yu 1
Affiliation  

Until recently, most studies on nucleation and growth mechanisms have employed electrochemical transient measurements, and numerous models have been established on various metal electrode elements. Contrary to the conventional tip-induced nucleation and growth model, a base-induced nucleation and growth mode was discovered not so long ago, which highlighted the importance of direct real-time observations such as visualization. As analysis techniques developed, diverse in situ/operando imaging methods have spurred the fundamental understanding of complex and dynamic battery electrochemistry. Experimental observations of alkali Li and Na metals are limited and difficult because their high reactivity makes not only the fabrication but also the analysis itself challenging. Na metal has high reactivity to electrolytes. Accordingly, it is difficult to visualize the Na deposition in real-time due to gas evolution and resolution limitation. Only a few studies have examined the Na deposition and dissolution reactions in operando. It is generally believed that the Mg anode is free from the dendrite growth of Mg metal, and Mg deposition preferentially occurs along the surface direction. However, whether the Mg anode always follows the dendrite-free growth has currently become a controversial topic and is being discussed and redefined based on real-time imaging analyses. In addition, a variety of morphological evolutions in the metal anodes are required to be systematically distinguished by key parameters. Real-time imaging analysis can directly confirm the solid–liquid–solid multiphase conversion reactions of S and Se cathodes. S and Se elements belong to the same chalcogen group, but their crystal structures and morphological changes significantly differ in each electrode during deposition and dissolution reactions. Therefore, it is necessitated to discuss the nucleation and growth behaviors by examining intrinsic properties of each element in chalcogen cathodes. Considering that a mechanistic understanding of the Se cathode is in its infancy, its nucleation and growth behaviors must be further explored through fundamental studies. In this Account, we aim to discuss the nucleation and growth behaviors of metal (Li, Na, and Mg) anodes and chalcogen (S and Se) cathodes. To elucidate their nucleation and growth mechanisms, we overview the morphological evolutions on the electrode surface and interface by in situ/operando visualizations. Our recent studies covering Li, Na, Mg, S, and Se electrodes verified by operando X-ray imaging are used as critical resources in understanding their nucleation and growth behaviors. Overall, with validation of the complex and dynamic nucleation and growth behaviors of metal and chalcogen electrodes by in situ/operando visualization methods, we hope that this Account can contribute to supporting the fundamental knowledge for the development of high-energy-density metal and chalcogen electrodes.

中文翻译:

后锂离子电池电极的实时可视化成核和生长

直到最近,大多数关于成核和生长机制的研究都采用电化学瞬态测量,并且已经在各种金属电极元件上建立了许多模型。与传统的尖端诱导成核和生长模型相反,不久前发现了碱基诱导成核和生长模式,这突出了直接实时观察(如可视化)的重要性。随着分析技术的发展,各种原位/操作成像方法促进了对复杂和动态电池电化学的基本理解。碱金属 Li 和 Na 金属的实验观察是有限且困难的,因为它们的高反应性不仅使制造而且对分析本身也具有挑战性。钠金属对电解质具有高反应性。因此,由于气体演化和分辨率限制,很难实时可视化 Na 沉积。只有少数研究检查了操作中的Na 沉积和溶解反应. 一般认为Mg负极没有Mg金属的枝晶生长,Mg沉积优先沿表面方向发生。然而,Mg阳极是否始终遵循无枝晶生长目前已成为一个有争议的话题,并且正在根据实时成像分析进行讨论和重新定义。此外,金属负极的各种形貌演变需要通过关键参数进行系统区分。实时成像分析可以直接确认硫和硒阴极的固-液-固多相转化反应。S和Se元素属于同一硫属元素族,但在沉积和溶解反应过程中,它们的晶体结构和形貌变化在每个电极上都有显着差异。所以,有必要通过检查硫属元素阴极中每种元素的固有特性来讨论成核和生长行为。考虑到对硒阴极的机理认识还处于起步阶段,必须通过基础研究进一步探索其成核和生长行为。在这篇文章中,我们旨在讨论金属(Li、Na 和 Mg)阳极和硫属元素(S 和 Se)阴极的成核和生长行为。为了阐明它们的成核和生长机制,我们通过以下方式概述了电极表面和界面上的形态演变 在这篇文章中,我们旨在讨论金属(Li、Na 和 Mg)阳极和硫属元素(S 和 Se)阴极的成核和生长行为。为了阐明它们的成核和生长机制,我们通过以下方式概述了电极表面和界面上的形态演变 在这篇文章中,我们旨在讨论金属(Li、Na 和 Mg)阳极和硫属元素(S 和 Se)阴极的成核和生长行为。为了阐明它们的成核和生长机制,我们通过以下方式概述了电极表面和界面上的形态演变原位/操作可视化。我们最近的研究涵盖了通过原位X 射线成像验证的 Li、Na、Mg、S 和 Se 电极,被用作了解其成核和生长行为的关键资源。总体而言,通过原位/操作可视化方法验证金属和硫属元素电极的复杂和动态成核和生长行为,我们希望该帐户能够为支持高能量密度金属和硫属元素开发的基础知识做出贡献电极。
更新日期:2023-01-23
down
wechat
bug