当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Operando Characterization and Theoretical Modeling of Metal|Electrolyte Interphase Growth Kinetics in Solid-State Batteries. Part I: Experiments
Chemistry of Materials ( IF 7.2 ) Pub Date : 2023-01-20 , DOI: 10.1021/acs.chemmater.2c03130
Edouard Quérel 1 , Nicholas J Williams 1 , Ieuan D Seymour 1 , Stephen J Skinner 1 , Ainara Aguadero 1, 2
Affiliation  

To harness all of the benefits of solid-state battery (SSB) architectures in terms of energy density, their negative electrode should be an alkali metal. However, the high chemical potential of alkali metals makes them prone to reduce most solid electrolytes (SE), resulting in a decomposition layer called an interphase at the metal|SE interface. Quantitative information about the interphase chemical composition and rate of formation is challenging to obtain because the reaction occurs at a buried interface. In this study, a thin layer of Na metal (Na0) is plated on the surface of an SE of the NaSICON family (Na3.4Zr2Si2.4P0.6O12 or NZSP) inside a commercial X-ray photoelectron spectroscopy (XPS) system while continuously analyzing the composition of the interphase operando. We identify the existence of a solid electrolyte interphase at the Na0|NZSP interface, and more importantly, we demonstrate for the first time that this protocol can be used to study the kinetics of interphase formation. A second important outcome of this article is that the surface chemistry of NZSP samples can be tuned to improve their stability against Na0. It is demonstrated by XPS and time-resolved electrochemical impedance spectroscopy (EIS) that a native NaxPOy layer present on the surface of as-sintered NZSP samples protects their surface against decomposition.

中文翻译:

固态电池中金属|电解质相间生长动力学的操作表征和理论建模。第一部分:实验

为了利用固态电池 (SSB) 架构在能量密度方面的所有优势,它们的负极应该是碱金属。然而,碱金属的高化学势使其易于还原大多数固体电解质(SE),导致在金属|SE界面处形成称为界面的分解层。由于反应发生在掩埋的界面,因此很难获得有关界面化学成分和形成速率的定量信息。在这项研究中,Na 金属薄层 (Na 0 ) 镀在 NaSICON 系列的 SE 表面 (Na 3.4 Zr 2 Si 2.4 P 0.6 O 12或 NZSP) 在商业 X 射线光电子能谱 (XPS) 系统内,同时连续分析相间操作数的组成。我们确定了 Na 0 |NZSP界面处存在固体电解质界面,更重要的是,我们首次证明该协议可用于研究界面形成的动力学。本文的第二个重要成果是可以调整 NZSP 样品的表面化学,以提高它们对 Na 0的稳定性。XPS 和时间分辨电化学阻抗谱 (EIS) 表明,烧结 NZSP 样品表面存在的天然 Na x PO y层可保护其表面免于分解。
更新日期:2023-01-20
down
wechat
bug