当前位置: X-MOL 学术J. Phys. D: Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An effective method to enhance the underwater sound absorption performance by constructing a membrane-type acoustic metamaterial
Journal of Physics D: Applied Physics ( IF 3.4 ) Pub Date : 2022-09-06 , DOI: 10.1088/1361-6463/ac82d3
Yingjian Sun , Xujin Yuan , Zhongkun Jin , Guangfu Hong , Mingji Chen , Mengjing Zhou , Weiduan Li , Daining Fang

Broadband sound absorption has consistently been a challenge in designing underwater sound absorption structure (USAS). Most research of USASs achieve broadband sound absorption through structural optimization, which curbs the freedom of designing, and commonly alights it at the expense of increased thickness. In this paper, a method is reported to broaden the frequency band of the USAS by embedding a membrane-type resonator into the cavity, which forming a membrane-type underwater acoustic absorption metamaterial. We demonstrate the mechanism of membrane-type metamaterial by theory, and verify it by simulation and experiment. The experimental results show that the sound absorption coefficient in the frequency range of 2000–10 000 Hz is significantly improved after implanting the membrane-type resonator into the cavity. The average sound absorption coefficient is increased by nearly 17%, and the improvement effect of the sound absorption covers to each frequency point, which is consistent with our expectation. As the case of applying membrane-type metamaterials to the design process of underwater acoustic structures, this research possesses great application potential in acoustic wave communication and device compatibility design technologies.

中文翻译:

构建膜型声学超材料提高水下吸声性能的有效方法

宽带吸声一直是设计水下吸声结构 (USAS) 的挑战。USAS的研究大多通过结构优化来实现宽带吸声,这限制了设计的自由度,通常以增加厚度为代价来实现。在本文中,报道了一种通过将膜型谐振器嵌入腔体中来拓宽USAS频带的方法,从而形成膜型水声吸收超材料。我们从理论上论证了膜型超材料的机理,并通过仿真和实验对其进行了验证。实验结果表明,将膜式谐振器植入空腔后,2000~10 000 Hz频率范围内的吸声系数得到显着提高。平均吸音系数提升近17%,吸音提升效果覆盖到各个频点,符合我们的预期。作为将膜型超材料应用于水声结构设计过程的案例,该研究在声波通信和器件兼容性设计技术方面具有巨大的应用潜力。
更新日期:2022-09-06
down
wechat
bug