当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation analysis of bio-oil reforming for co-production syngas and high purity H2 or CO2 with chemical looping processes
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2023-01-17 , DOI: 10.1016/j.enconman.2023.116684
Xun Wang , Yongcheng Cai , Chenxuanzi Wang , Mingxuan Zhong , Bo Xiao , Tingting Xu

Chemical looping allows for the production of different products, such as syngas, high-purity hydrogen and high concentration CO2, through a single process without the need for separation. In this study, a detailed analysis is investigated by utilizing Aspen Plus software to explore the feasibility of bio-oils efficient utilization in four chemical looping processes. The Sorption Enhanced Steam Reforming (SESR) process for syngas production with CO2 capture can be modified into an autothermal process by combusting a fraction of the syngas, leading to a syngas yield of 11.04 (mol/mol fuel) and a CO2 capture capacity of 4.18 (mol/mol fuel). The Calcium and Chemical Looping Reforming (CaL-CLR) process is a unique approach to attaining the greatest syngas yield of 11.31 (mol/mol fuel) and capturing the highest CO2 of 5.40 (mol/mol fuel) simply by adjusting the flow rate of NiO oxygen carrier to realize autothermic reforming without compromising the syngas output. Nevertheless, the integration of NiO and air reactor (AR) will lead to increased financial and operational outlays. For co-production of syngas and high-purity hydrogen, the Three-Reactors Chemical Looping Hydrogen (TR-CLH) process can produce high-purity hydrogen with 5.70 (mol/mol fuel) under autothermal conditions, but the syngas yield and purity are low. The Chemical Looping Reforming and Water Splitting (CLRWS) process has the potential to create a substantial syngas yield, up to 9.63 (mol/mol fuel), as well as a considerable flow rate of high-purity hydrogen, 8.42 (mol/mol fuel). It is clear that this process is more successful than other processes available; however, the excessively high temperature of the fuel reactor (FR) impedes its further utilization.



中文翻译:

生物油重整联产合成气和高纯H2或CO2化学链工艺模拟分析

化学循环允许通过单一过程生产不同的产品,例如合成气、高纯度氢气和高浓度CO 2,​​而无需分离。在这项研究中,利用 Aspen Plus 软件进行了详细分析,以探索生物油在四种化学循环过程中高效利用的可行性。通过燃烧一部分合成气,可以将用于合成气生产并捕获 CO 2的吸附强化蒸汽重整 (SESR) 工艺修改为自热工艺,从而导致合成气产率为 11.04(mol/mol 燃料)和 CO 2捕获能力为 4.18(mol/mol 燃料)。钙和化学循环重整 (CaL-CLR) 工艺是一种独特的方法,只需调整流速即可获得 11.31(mol/mol 燃料)的最大合成气产量和捕获 5.40(mol/mol 燃料)的最高 CO 2 NiO氧载体实现自热重整而不影响合成气产量。尽管如此,NiO 和空气反应堆 (AR) 的整合将导致财务和运营支出增加。用于联产合成气和高纯氢气三反应器化学循环制氢(TR-CLH)工艺可在自热条件下生产5.70(mol/mol燃料)的高纯氢气,但合成气收率和纯度较低。化学循环重整和水分解 (CLRWS) 工艺有可能产生高达 9.63(mol/mol 燃料)的大量合成气产量,以及相当大的高纯度氢气流量,8.42(mol/mol 燃料) ). 很明显,这个过程比其他可用的过程更成功;然而,燃料反应堆(FR)的过高温度阻碍了其进一步利用。

更新日期:2023-01-17
down
wechat
bug