当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of a high-efficiency electrolytic energy conversion system based on equilibrium analysis of electric-field and flow-field through simulation and experiments
Energy Conversion and Management ( IF 10.4 ) Pub Date : 2023-01-13 , DOI: 10.1016/j.enconman.2023.116679
Pan Zhang , Jin Wang , Yirui Shu , Wenjun Fu , Ye Wang , Jinghua Ye , Lin Yang

In the context of sudden changes in global energy supply patterns, promoting the diversification of energy supply is an important movement for the sustainable development of the economy. Nuclear energy as a green and clean energy source has undergone rapid development. About 60 wt% of the world's fluorine production is used to produce uranium, a fuel for nuclear power plants. However, fluorine as a necessary raw material facing the challenges of high energy consumption and short lifespan of the electrolysis system. To overcome these drawbacks, this study aims to develop a high-efficiency electrolytic energy conversion system. Therefore, to optimize the design of the electrolysis system, the relationships between the electric field, the flow field and the electrode/electrolyzer geometry are simulated. Then, the simulation results are verified and further corrected by corrosion experiments. Subsequently, the key factors affecting the performance of the electrolyzer are obtained from the bubble separation experiment and simulation. Finally, a high-efficient electrolysis system is established and successfully put into industrial operation. In conclusion, in the course of model calculations, the method of reducing energy consumption is put forward, and the energy consumption is reduced from 17,000 to 14,980 kWh/ton by actual production, and the service life of carbon anode is extended from 90 days to 243 days. The breakthrough in fluorine electrolysis provides practical guidance for improving the performance of the electrolysis process.



中文翻译:

通过仿真和实验设计基于电场和流场平衡分析的高效电解能量转换系统

在全球能源供应格局突变的背景下,推动能源供应多元化是经济可持续发展的重要举措。核能作为一种绿色清洁能源得到了快速发展。世界上约 60 wt% 的氟产量用于生产核电站燃料铀。然而,氟作为必要的原料,面临着电解系统能耗高、寿命短的挑战。为了克服这些缺点,本研究旨在开发一种高效的电解能量转换系统。因此,为了优化电解系统的设计,模拟了电场、流场和电极/电解槽几何形状之间的关系。然后,模拟结果通过腐蚀实验得到验证和进一步修正。随后,通过气泡分离实验和仿真得到了影响电解槽性能的关键因素。最终建立了高效电解系统并成功投入工业运行。综上所述,在模型计算过程中,提出了降低能耗的方法,通过实际生产,能耗从17000千瓦时/吨降低到14980千瓦时/吨,碳负极的使用寿命从90天延长至243天。氟电解的突破为提高电解过程的性能提供了实用指导。通过气泡分离实验和模拟得到了影响电解槽性能的关键因素。最终建立了高效电解系统并成功投入工业运行。综上所述,在模型计算过程中,提出了降低能耗的方法,通过实际生产,能耗从17000千瓦时/吨降低到14980千瓦时/吨,碳负极的使用寿命从90天延长至243天。氟电解的突破为提高电解过程的性能提供了实用指导。通过气泡分离实验和模拟得到了影响电解槽性能的关键因素。最终建立了高效电解系统并成功投入工业运行。综上所述,在模型计算过程中,提出了降低能耗的方法,通过实际生产,能耗从17000千瓦时/吨降低到14980千瓦时/吨,碳负极的使用寿命从90天延长至243天。氟电解的突破为提高电解过程的性能提供了实用指导。在模型计算过程中,提出降低能耗的方法,实际生产能耗由17000千瓦时/吨降低至14980千瓦时/吨,碳负极使用寿命由90天延长至243天。氟电解的突破为提高电解过程的性能提供了实用指导。在模型计算过程中,提出降低能耗的方法,实际生产能耗由17000千瓦时/吨降低至14980千瓦时/吨,碳负极使用寿命由90天延长至243天。氟电解的突破为提高电解过程的性能提供了实用指导。

更新日期:2023-01-13
down
wechat
bug