当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utilization of triply periodic minimal surfaces for performance enhancement of adsorption cooling systems: Computational fluid dynamics analysis
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2023-01-10 , DOI: 10.1016/j.enconman.2023.116657
Mohamed G. Gado , Shinichi Ookawara , Hamdy Hassan

In this study, triply periodic minimal surface (TPMS) structures have been implemented in adsorber/desorber to improve the performance of adsorption cooling systems (ACSs). The use of metal TPMS-based structures considerably increased the effective thermal conductivity of the porous media/metal composite due to its large surface area to porous media volume. A fully-three-dimensional CFD model was constructed using Ansys Fluent and validated based on relevant previous studies. Five distinct TPMS-based structures, including Gyroid, Diamond, I-graph-wrapped package, Primitive, and Lidinoid were investigated and compared with conventional Fins-based structures under different porosities, constant adsorption times, and optimal adsorption times. The specific surface area and geometric tortuosity of the adopted structures were evaluated using GeoDict software. The results demonstrated that Lidinoid attained the cyclic specific cooling power (SCP) enhancement of 12.4 % compared to Fins-based structures under the constant adsorption time of 500 s and the consistent porosity of 0.5. Meanwhile, when operated at the optimal adsorption time for each structure, Lidinoid improved the cyclic SCP by 17.5 %, while Primitive showed 6.9 % decrease in cyclic SCP compared to Fins-based structure. The cyclic SCP of TPMS structures was better than that of Fins-based structure at medium and higher porosities of 0.5 and 0.8, respectively. However, at lower porosity of 0.2, Fins-based structures outperformed TPMS structures in cyclic SCP. In terms of daily performance, Gyroid, Diamond, and Primitive structures showed faster kinetics and more potential for ACSs applications. The results indicated that Primitive structure achieved 51.6 % increase in cooling capacity per day compared to conventional Fins-based structure. In conclusion, this study has well demonstrated that the exploitation of TPMS opens new avenues for next-generation adsorption cooling applications with superior performance.



中文翻译:

利用三重周期最小表面提高吸附冷却系统的性能:计算流体动力学分析

在这项研究中,三重周期最小表面 (TPMS) 结构已在吸附器/解吸器中实现,以提高吸附冷却系统 (ACS) 的性能。使用基于金属 TPMS 的结构大大提高了多孔介质/金属复合材料的有效热导率,因为它的表面积比多孔介质体积大。使用 Ansys Fluent 构建了一个全三维 CFD 模型,并根据之前的相关研究对其进行了验证。研究了五种不同的基于 TPMS 的结构,包括 Gyroid、Diamond、I-graph-wrapped package、Primitive 和 Lidinoid,并在不同孔隙率、恒定吸附时间和最佳吸附时间下与传统的基于鳍的结构进行了比较。使用 GeoDict 软件评估所采用结构的比表面积和几何曲折度。结果表明,在 500 s 的恒定吸附时间和 0.5 的一致孔隙率下,与鳍基结构相比,Lidinoid 的循环比冷却功率 (SCP) 提高了 12.4%。同时,当在每个结构的最佳吸附时间操作时,Lidinoid 将循环 SCP 提高了 17.5%,而 Primitive 与基于 Fins 的结构相比,循环 SCP 减少了 6.9%。TPMS 结构的循环 SCP 分别在 0.5 和 0.8 的中孔隙率和更高孔隙率下优于基于翅片的结构。然而,在 0.2 的较低孔隙率下,基于鳍的结构在循环 SCP 中优于 TPMS 结构。在日常表现方面,Gyroid、Diamond、和原始结构显示出更快的动力学和更大的 ACS 应用潜力。结果表明,与传统的基于翅片的结构相比,Primitive 结构每天的冷却能力提高了 51.6%。总之,这项研究很好地证明了 TPMS 的开发为具有卓越性能的下一代吸附冷却应用开辟了新途径。

更新日期:2023-01-10
down
wechat
bug