当前位置: X-MOL 学术Friction › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Achieving macroscale superlubricity with ultra-short running-in period by using polyethylene glycol-tannic acid complex green lubricant
Friction ( IF 6.3 ) Pub Date : 2023-01-06 , DOI: 10.1007/s40544-022-0660-3
Changhe Du , Tongtong Yu , Zishuai Wu , Liqiang Zhang , Ruilin Shen , Xiaojuan Li , Min Feng , Yange Feng , Daoai Wang

Superlubricating materials can greatly reduce the energy consumed and economic losses by unnecessary friction. However, a long pre-running-in period is indispensable for achieving superlubricity; this leads to severe wear on the surface of friction pairs and has become one of the important factors in the wear of superlubricating materials. In this study, a polyethylene glycol-tannic acid complex green liquid lubricant (PEG10000-TA) was designed to achieve macroscale superlubricity with an ultrashort running-in period of 9 s under a contact pressure of up to 410 MPa, and the wear rate was only 1.19 × 10−8 mm3·N−1·m−1. This is the shortest running-in time required to achieve superlubricity in Si3N4/glass (SiO2). The results show that the strong hydrogen bonds between PEG and TA molecules can significantly reduce the time required for the tribochemical reaction, allowing the lubricating material to reach the state of superlubrication rapidly. Furthermore, the strong hydrogen bond can share a large load while fixing free water molecules in the contact zone to reduce shear interaction. These findings will help advance the use of liquid superlubricity technology in industrial and biomedical.



中文翻译:

使用聚乙二醇-单宁酸复合绿色润滑剂实现超短磨合期的宏观超润滑

超级润滑材料可以大大减少不必要的摩擦所消耗的能量和经济损失。然而,为了获得超润滑性,长时间的预磨合是必不可少的;这导致摩擦副表面严重磨损,已成为超润滑材料磨损的重要因素之一。本研究设计了一种聚乙二醇-单宁酸复合绿色液体润滑剂 (PEG10000-TA),可在高达 410 MPa 的接触压力下以 9 s 的超短磨合期实现宏观超润滑,磨损率为只有 1.19 × 10 −8 mm 3 ·N −1 ·m −1这是在 Si 3 N中实现超润滑所需的最短磨合时间4 /玻璃(SiO 2)。结果表明,PEG和TA分子之间的强氢键可以显着减少摩擦化学反应所需的时间,使润滑材料迅速达到超润滑状态。此外,强氢键可以分担较大的载荷,同时在接触区固定游离水分子以减少剪切相互作用。这些发现将有助于推进液体超润滑技术在工业和生物医学中的应用。

更新日期:2023-01-07
down
wechat
bug