当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defects Passivation via Potassium Iodide Post-Treatment for Antimony Selenosulfide Solar Cells with Improved Performance
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-12-20 , DOI: 10.1002/adfm.202211657
Jiashuai Li 1, 2 , Zheng Gao 1 , Xuzhi Hu 1, 2 , Shuxin Wang 1, 2 , Yongjie Liu 1, 2 , Chen Wang 1, 2 , Kailian Dong 1, 2 , Zhaofeng Zeng 3 , Chen Tao 1, 2 , Guojia Fang 1, 2
Affiliation  

Antimony selenosulfide (Sb2(S,Se)3) has been emerging as a promising light absorber in the past few years owing to tunable bandgap (1.1–1.7 eV), high absorption coefficient (>105 cm−1) and excellent phase and environmental stability. However, the efficiency of Sb2(S,Se)3 solar cells lags far behind the Shockley–Queisser limit. One of the critical obstacles originates from various extrinsic and intrinsic defects. They mostly locate in the deep energy levels and are prone to form recombination centers, inhibiting the improvement of device performance. Herein, surface post-treatment via potassium iodide is introduced to fabricate high-quality Sb2(S,Se)3 films and solar cells. The surface post-treatment not only manipulates the crystal growth process to form compact films with larger grain size but also forms better band alignment and inhibits the formation of deep-level defects antimony antisite (SbSe), thus improving the quality of heterojunction. Consequently, the resultant Sb2(S,Se)3 solar cells achieve a champion power conversion efficiency of 9.22%. This study provides a new strategy of passivating deep-level intrinsic defects via surface post-treatment for high-efficiency Sb2(S,Se)3 solar cells.

中文翻译:

碘化钾后处理缺陷钝化硒硫化锑太阳能电池性能提升

由于可调带隙 (1.1–1.7 eV)、高吸收系数 (>10 5 cm  -1 )和优异的相位,硒硫化锑 (Sb 2 (S,Se) 3 ) 在过去几年中已成为一种很有前途的光吸收剂和环境稳定性。然而,Sb 2 (S,Se) 3太阳能电池的效率远远落后于肖克利-奎塞尔极限。关键障碍之一来自各种外在和内在缺陷。它们大多位于深能级,容易形成复合中心,抑制了器件性能的提升。在此,介绍了通过碘化钾进行表面后处理以制造高质量的 Sb 2 (S,Se)3薄膜和太阳能电池。表面后处理不仅操纵晶体生长过程,形成晶粒尺寸更大的致密薄膜,而且形成更好的能带排列,抑制深能级缺陷锑反位(Sb Se)的形成,从而提高异质结质量。因此,所得Sb 2 (S,Se) 3太阳能电池实现了 9.22%的冠军功率转换效率。本研究为高效 Sb 2 (S,Se) 3太阳能电池提供了一种通过表面后处理钝化深能级本征缺陷的新策略。
更新日期:2022-12-20
down
wechat
bug