当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal and systematic design of large-scale electrodes for practical Li–air batteries
Electrochimica Acta ( IF 6.6 ) Pub Date : 2022-11-29 , DOI: 10.1016/j.electacta.2022.141642
Sun-Hwa Yeon , Kyoung-Hee Shin , Chang-Soo Jin , Se-Kook Park , Seung Hae Hwang , Dong Ha Kim , Myung-Seok Jeon , Sung-One Kim , Daeseon Hong , Yeonji Choi

The battery market to enable the broad uses of electric vehicles and renewable energy sources is undergoing a rapid expansion given the requirements of light, safe, and low-cost materials. Li–air batteries are considered suitable candidates that can overcome the existing challenges in this field. Continuous progress in performance improvements triggered by the structure and design evolution of battery electrodes is essential to utilize Li–air batteries in future applications. In this study, an optimal design process is devised for the practical application of Li–air batteries with large-scale area and capacity levels. The primary difficulty in the large-scale design for practical use originates from the design complexity caused by the one-side (air cathode) open-cell structure for the proper air flow. To examine problems related to practical cell manufacturing, we attempted to explore the large-scale electrode on the charge/discharge performance with two current collectors, specifically Ni foam and a gas diffusion layer (GDL), in single and stacked Li–air cells. A large-scale stacked 1.07 Ah cell was manufactured using commercial carbon mixtures with tabless current collector of Ni foam. The single-cell capacity of tabless Ni foam presented approximately 440 mAh at full-depth scan, showing that the cell-specific gravimetric and volumetric energy densities were 385 Wh/kg and 428 Wh/L, respectively. In the case of tabless GDL, the cell capacity was 630 mAh at full-depth scan. The cell-specific gravimetric and volumetric energy densities of tabless GDL were 680 Wh/kg and 756 Wh/L, respectively. However, the use of a GDL current collector resulted in structural deformation during the charge/discharge reaction due to a self-reaction in spite of the 1.56 times higher energy density than that of Ni foam. Although the GDL helps to enhance the reactivity and performance by increasing the capacity when used with an active material, the extended cycle stability of the Li–air cell is hindered due to the self-reaction of the current collector. These results present case‐based evidence that extends our knowledge about the trade‐offs between capacity enhancements and long-cycle stability regarding the choices of materials for the manufacturing of Li-air cells, thus proving practical insights with regard to the fabrication of large-scale Li–air cells for commercialization.



中文翻译:

实用锂空气电池大尺寸电极优化系统设计

鉴于对轻质、安全和低成本材料的要求,使电动汽车和可再生能源得到广泛应用的电池市场正在迅速扩张。锂空气电池被认为是可以克服该领域现有挑战的合适候选者。由电池电极的结构和设计演变引发的性能改进的持续进步对于在未来的应用中使用锂空气电池至关重要。在这项研究中,针对具有大面积和容量水平的锂空气电池的实际应用设计了优化设计过程。实际使用的大规模设计的主要困难源于设计的复杂性,这是由单侧(空气阴极)开孔结构引起的适当空气流动。为了研究与实际电池制造相关的问题,我们尝试在单个和堆叠的锂空气电池中探索具有两个集电器的大型电极的充电/放电性能,特别是镍泡沫和气体扩散层 (GDL)。大型堆叠式 1.07 Ah 电池是使用商用碳混合物和 Ni 泡沫表电流收集器制造的。全深度扫描时,tablesless 泡沫镍的单电池容量约为 440 mAh,表明电池比重和体积能量密度分别为 385 Wh/kg 和 428 Wh/L。在无表 GDL 的情况下,电池容量在全深度扫描时为 630 mAh。tabless GDL 的细胞特异性重量和体积能量密度分别为 680 Wh/kg 和 756 Wh/L。然而,尽管 GDL 集电器的能量密度比泡沫镍高 1.56 倍,但由于自反应,GDL 集电器的使用导致充电/放电反应期间的结构变形。尽管 GDL 在与活性材料一起使用时通过增加容量来帮助提高反应性和性能,但由于集电器的自反应,锂空气电池的延长循环稳定性受到阻碍。这些结果提供了基于案例的证据,扩展了我们对锂空气电池制造材料选择的容量增强和长周期稳定性之间权衡的认识,从而证明了关于制造大型电池的实用见解。规模化锂空气电池商业化。

更新日期:2022-11-29
down
wechat
bug