当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modified adaptive discrete-time incremental nonlinear dynamic inversion control for quad-rotors in the presence of motor faults
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2022-12-01 , DOI: 10.1016/j.ymssp.2022.109989
Karim Ahmadi , Davood Asadi , Seyed-Yaser Nabavi-Chashmi , Onder Tutsoy

Unmanned air vehicles are intrinsically non-linear, unstable, uncertain, and prone to a variety of faults, most commonly the motor faults. The main objective of this paper is to develop a fault-tolerant control algorithm for the quadrotors with the motor faults. Accordingly, a novel adaptive modified incremental nonlinear dynamic inversion (MINDI) control is proposed to stabilize and control the quad-rotor with partial motor faults. The controller consists of a MINDI controller augmented with a discrete-time nonlinear adaptive algorithm. Since the incremental nonlinear dynamic inversion (INDI) algorithm is essentially based on the sensor measurements, it necessitates the angular rates differentiation and therefore amplifies the high-frequency noises produced by the gyroscopes. The application of derivative filters causes unavoidable internal state delays in the INDI structure. Henceforth, the performance of the controller developed for the unstable and uncertain quadrotors degrades considerably. To address this drawback, this paper proposes the MINDI controller which basically derives the angular accelerations from the angular moment estimations. Furthermore, to increase the robustness of the MINDI against motor faults, a discrete-time adaptive controller has been incorporated. The performance of the proposed controllers is verified both through the nonlinear simulations and testbed experiments. The results are compared with a recent efficient algorithm, which had been implemented on a quad-rotor model.



中文翻译:

存在电机故障的四旋翼改进型自适应离散时间增量非线性动态逆变控制

无人机本质上是非线性的、不稳定的、不确定的,并且容易出现各种故障,最常见的是电机故障。本文的主要目的是针对电机故障的四旋翼飞行器开发一种容错控制算法。因此,提出了一种新的自适应改进增量非线性动态逆变器(MINDI)控制来稳定和控制具有部分电机故障的四旋翼。该控制器由一个 MINDI 控制器组成,该控制器增加了离散时间非线性自适应算法。由于增量非线性动态反演 (INDI) 算法本质上是基于传感器测量,因此需要角速率微分,因此会放大陀螺仪产生的高频噪声。导数滤波器的应用导致 INDI 结构中不可避免的内部状态延迟。此后,为不稳定和不确定的四旋翼飞行器开发的控制器的性能会大大降低。为了解决这个缺点,本文提出了 MINDI 控制器,它基本上从角力矩估计中推导出角加速度。此外,为了提高 MINDI 对电机故障的鲁棒性,集成了离散时间自适应控制器。通过非线性仿真和试验台实验验证了所提出的控制器的性能。将结果与最近在四旋翼模型上实施的高效算法进行了比较。为不稳定和不确定的四旋翼飞行器开发的控制器的性能会大大降低。为了解决这个缺点,本文提出了 MINDI 控制器,它基本上从角力矩估计中推导出角加速度。此外,为了提高 MINDI 对电机故障的鲁棒性,集成了离散时间自适应控制器。通过非线性仿真和试验台实验验证了所提出的控制器的性能。将结果与最近在四旋翼模型上实施的高效算法进行了比较。为不稳定和不确定的四旋翼飞行器开发的控制器的性能会大大降低。为了解决这个缺点,本文提出了 MINDI 控制器,它基本上从角力矩估计中推导出角加速度。此外,为了提高 MINDI 对电机故障的鲁棒性,集成了离散时间自适应控制器。通过非线性仿真和试验台实验验证了所提出的控制器的性能。将结果与最近在四旋翼模型上实施的高效算法进行了比较。为了提高 MINDI 对电机故障的鲁棒性,采用了离散时间自适应控制器。通过非线性仿真和试验台实验验证了所提出的控制器的性能。将结果与最近在四旋翼模型上实施的高效算法进行了比较。为了提高 MINDI 对电机故障的鲁棒性,采用了离散时间自适应控制器。通过非线性仿真和试验台实验验证了所提出的控制器的性能。将结果与最近在四旋翼模型上实施的高效算法进行了比较。

更新日期:2022-12-01
down
wechat
bug