当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A mechanics-based approach to realize high–force capacity electroadhesives for robots
Science Robotics ( IF 26.1 ) Pub Date : 2022-11-30 , DOI: 10.1126/scirobotics.abo2179
David J Levine 1 , Gokulanand M Iyer 1 , R Daelan Roosa 1 , Kevin T Turner 1 , James H Pikul 1
Affiliation  

Materials with electroprogrammable stiffness and adhesion can enhance the performance of robotic systems, but achieving large changes in stiffness and adhesive forces in real time is an ongoing challenge. Electroadhesive clutches can rapidly adhere high stiffness elements, although their low force capacities and high activation voltages have limited their applications. A major challenge in realizing stronger electroadhesive clutches is that current parallel plate models poorly predict clutch force capacity and cannot be used to design better devices. Here, we use a fracture mechanics framework to understand the relationship between clutch design and force capacity. We demonstrate and verify a mechanics-based model that predicts clutch performance across multiple geometries and applied voltages. On the basis of this approach, we build a clutch with 63 times the force capacity per unit electrostatic force of state-of-the-art electroadhesive clutches. Last, we demonstrate the ability of our electroadhesives to increase the load capacity of a soft, pneumatic finger by a factor of 27 times compared with a finger without an electroadhesive.

中文翻译:

一种基于力学的方法来实现机器人的高力容量电粘合剂

具有电编程刚度和粘附力的材料可以提高机器人系统的性能,但实时实现刚度和粘附力的大变化是一项持续的挑战。电粘附离合器可以快速粘附高刚度元件,尽管它们的低力容量和高激活电压限制了它们的应用。实现更强的电粘附离合器的一个主要挑战是当前的平行板模型不能很好地预测离合器力容量,并且不能用于设计更好的装置。在这里,我们使用断裂力学框架来理解离合器设计与受力能力之间的关系。我们演示并验证了一个基于力学的模型,该模型可预测跨多种几何形状和施加电压的离合器性能。在这种方法的基础上,我们制造的离合器的每单位静电力容量是最先进的电粘附式离合器的 63 倍。最后,我们证明了我们的电粘合剂能够将柔软的气动手指的负载能力提高 27 倍,与没有电粘合剂的手指相比。
更新日期:2022-11-30
down
wechat
bug