当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Traversable wormhole dynamics on a quantum processor
Nature ( IF 50.5 ) Pub Date : 2022-11-30 , DOI: 10.1038/s41586-022-05424-3
Daniel Jafferis 1 , Alexander Zlokapa 2, 3, 4, 5 , Joseph D Lykken 6 , David K Kolchmeyer 1 , Samantha I Davis 3, 4 , Nikolai Lauk 3, 4 , Hartmut Neven 5 , Maria Spiropulu 3, 4
Affiliation  

The holographic principle, theorized to be a property of quantum gravity, postulates that the description of a volume of space can be encoded on a lower-dimensional boundary. The anti-de Sitter (AdS)/conformal field theory correspondence or duality1 is the principal example of holography. The Sachdev–Ye–Kitaev (SYK) model of N 1 Majorana fermions2,3 has features suggesting the existence of a gravitational dual in AdS2, and is a new realization of holography4,5,6. We invoke the holographic correspondence of the SYK many-body system and gravity to probe the conjectured ER=EPR relation between entanglement and spacetime geometry7,8 through the traversable wormhole mechanism as implemented in the SYK model9,10. A qubit can be used to probe the SYK traversable wormhole dynamics through the corresponding teleportation protocol9. This can be realized as a quantum circuit, equivalent to the gravitational picture in the semiclassical limit of an infinite number of qubits9. Here we use learning techniques to construct a sparsified SYK model that we experimentally realize with 164 two-qubit gates on a nine-qubit circuit and observe the corresponding traversable wormhole dynamics. Despite its approximate nature, the sparsified SYK model preserves key properties of the traversable wormhole physics: perfect size winding11,12,13, coupling on either side of the wormhole that is consistent with a negative energy shockwave14, a Shapiro time delay15, causal time-order of signals emerging from the wormhole, and scrambling and thermalization dynamics16,17. Our experiment was run on the Google Sycamore processor. By interrogating a two-dimensional gravity dual system, our work represents a step towards a program for studying quantum gravity in the laboratory. Future developments will require improved hardware scalability and performance as well as theoretical developments including higher-dimensional quantum gravity duals18 and other SYK-like models19.



中文翻译:

量子处理器上的可穿越虫洞动力学

全息原理,理论上是量子引力的一个特性,假设空间体积的描述可以在较低维度的边界上编码。反德西特 (AdS)/共形场论对应或对偶性1是全息术的主要示例。N  1 马约拉纳费米子2,3的 Sachdev-Ye-Kitaev (SYK) 模型具有表明 AdS 2中存在引力对偶的特征,并且是全息术4,5,6的新实现。我们调用 SYK 多体系统和引力的全息对应来探测纠缠与时空几何之间推测的 ER=EPR 关系7,8通过 SYK 模型9,10中实施的可穿越虫洞机制。一个量子位可用于通过相应的隐形传态协议9探测 SYK 可穿越虫洞动力学。这可以实现为量子电路,相当于无限数量的量子比特9的半经典极限中的引力图。在这里,我们使用学习技术构建一个稀疏化的 SYK 模型,我们在九量子位电路上通过实验实现了 164 个二量子位门,并观察了相应的可穿越虫洞动力学。尽管具有近似性质,但稀疏化 SYK 模型保留了可穿越虫洞物理学的关键属性:完美尺寸绕组11,12,13,与负能量冲击波14、夏皮罗时间延迟15、从虫洞中出现的信号的因果时间顺序以及加扰和热化动力学16,17一致的虫洞两侧的耦合。我们的实验是在 Google Sycamore 处理器上运行的。通过询问二维引力对偶系统,我们的工作代表了朝着在实验室研究量子引力的计划迈出的一步。未来的发展将需要改进的硬件可扩展性和性能以及理论发展,包括高维量子引力对偶18和其他类似 SYK 的模型19

更新日期:2022-12-01
down
wechat
bug