当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of core-shell BN-OH@Fe3O4@PAn nanocomposite with ultra-wide microwave absorption and efficiency thermal management
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2022-11-29 , DOI: 10.1016/j.jallcom.2022.168174
Yufeng Bai , Huizhi Yang , Lili He , Chunhua Ge , Renchang Zhai , Xiangdong Zhang

As electronic device integration and power density increase, materials must have brilliant microwave absorption properties and thermal conductivity to solve electromagnetic wave pollution and thermal management problems. In this work, we attempt to construct core-shell hydroxylated boron nitride nanosheets (BN-OH) @Fe3O4@PAn (BFeA) nanocomposites by chemical synthesis and in-situ growth design. The excellent magnetic properties of Fe3O4 and the good electrical conductivity of PAn can form magnetic loss and electrical loss centers to play a synergistic effect in improving microwave absorption capacity. Meanwhile, with the wave-transmitting material BN-OH as the core, the electromagnetic waves can be reflected multiple times within the absorber, which further enhances the microwave absorption capability of BFeA. As a result, the minimum reflection loss (RLmin) of the composites can reach − 49.85 dB at 11.36 GHz, and the effective microwave absorption bandwidth (RL<−10 dB, EAB) is close to 8 GHz (8.5–16.5 GHz) at a thickness of 3 mm. Simultaneously, to improve the thermal conductivity (TC) of the BFeA and reduce the interfacial thermal resistance, we use hydroxyl and dopamine as the interface linking agent at the interfaces of BN-OH and Fe3O4, and Fe3O4 and PAn, respectively. In this case, the TC of BFeA-2 reaches 0.98 W (m K)−1 at a total BN–OH content of only 13 wt. %, nearly 4 times that of the raw material (Fe3O4). This work can provide a reference for developing materials with dual functions of thermal management and microwave absorption.



中文翻译:

具有超宽微波吸收和高效热管理的核-壳 BN-OH@Fe3O4@PAn 纳米复合材料的构建

随着电子设备集成度和功率密度的增加,材料必须具有出色的微波吸收性能和导热性,以解决电磁波污染和热管理问题。在这项工作中,我们尝试通过化学合成和原位生长设计来构建核-壳羟基化氮化硼纳米片 (BN-OH) @Fe 3 O 4 @PAn (BFeA) 纳米复合材料。Fe 3 O 4优异的磁性能PAn良好的导电性可以形成磁损耗中心和电损耗中心,对提高微波吸收能力起到协同作用。同时,以透波材料BN-OH为核心,电磁波可在吸波体内部进行多次反射,进一步增强了BFeA的微波吸收能力。因此,复合材料的最小反射损耗(RL min)在 11.36 GHz 时可达到 − 49.85 dB,有效微波吸收带宽(RL<−10 dB,EAB)接近 8 GHz(8.5–16.5 GHz)厚度为 3 毫米。同时,为了提高 BFeA 的热导率 (TC) 并降低界面热阻,我们在 BN-OH 和 Fe 的界面使用羟基和多巴胺作为界面连接剂3 O 4、Fe 3 O 4和PAn。在这种情况下,BFeA-2 的 TC 达到 0.98 W (m K) -1,总 BN-OH 含量仅为 13 wt。%,是原料(Fe 3 O 4)的近4倍。该工作可为开发具有热管理和微波吸收双重功能的材料提供参考。

更新日期:2022-12-01
down
wechat
bug