当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pulsed laser 3D-micro/nanostructuring of materials for electrochemical energy storage and conversion
Progress in Materials Science ( IF 33.6 ) Pub Date : 2022-11-25 , DOI: 10.1016/j.pmatsci.2022.101052
Zhihao Li , Xiaoming Wei , Zhongmin Yang

Electrochemical energy storage and conversion play an important role in the sustainable development of an environmentally friendly society, but the performances of electrochemical devices, especially reaction kinetics, are limited by conventional physical and chemical material preparation technologies. Pulsed laser is a promising tool for tackling this problem, because it enables three-dimensional (3D) architecting of materials in micro/nanoscales with unique advantages of high precision, efficiency, controllability, cost-effectiveness, and degree-of-freedom. Thanks to the rapid iterating laser techniques, various novel materials have been fabricated through pulsed laser micro/nanostructuring, paving a new way for fabricating electrochemical devices with significantly improved performances, in terms of promoting ion diffusion, mitigating mechanical tension, regulating local electric field, and modulating local electrochemical environment. With these great opportunities, pulsed laser 3D-micro/nanostructuring of materials has become a thriving field and gained increasing popularity in the past decade. However, there still lacks a review that categorizes the techniques and summarizes the development trends in this field. Herein, we provide a comprehensive review on the recent advances in pulsed laser 3D-micro/nanostructuring of materials for electrochemical energy storage and conversion, emphasizing rechargeable batteries, supercapacitors, and electrocatalysts. We also present a prospect for future challenges as well as opportunities of this technology.



中文翻译:

用于电化学能量存储和转换的脉冲激光 3D 微/纳米结构材料

电化学能量存储和转换在环境友好型社会的可持续发展中发挥着重要作用,但电化学器件的性能,尤其是反应动力学,受到常规物理和化学材料制备技术的限制。脉冲激光是解决这一问题的有前途的工具,因为它能够实现微/纳米尺度材料的三维 (3D) 架构,具有高精度、效率、可控性、成本效益和自由度等独特优势。得益于激光技术的快速迭代,通过脉冲激光微纳结构制备了多种新型材料,为制备性能显着提高的电化学器件开辟了一条新途径,在促进离子扩散方面,减轻机械张力,调节局部电场,调节局部电化学环境。有了这些巨大的机遇,材料的脉冲激光 3D 微/纳米结构已成为一个蓬勃发展的领域,并在过去十年中越来越受欢迎。然而,仍然缺乏对技术进行分类并总结该领域发展趋势的综述。在此,我们全面回顾了用于电化学能量存储和转换的脉冲激光 3D-微/纳米结构材料的最新进展,重点是可充电电池、超级电容器和电催化剂。我们还提出了未来挑战的前景以及这项技术的机遇。有了这些巨大的机遇,材料的脉冲激光 3D 微/纳米结构已成为一个蓬勃发展的领域,并在过去十年中越来越受欢迎。然而,仍然缺乏对技术进行分类并总结该领域发展趋势的综述。在此,我们全面回顾了用于电化学能量存储和转换的脉冲激光 3D-微/纳米结构材料的最新进展,重点是可充电电池、超级电容器和电催化剂。我们还提出了未来挑战的前景以及这项技术的机遇。有了这些巨大的机遇,材料的脉冲激光 3D 微/纳米结构已成为一个蓬勃发展的领域,并在过去十年中越来越受欢迎。然而,仍然缺乏对技术进行分类并总结该领域发展趋势的综述。在此,我们全面回顾了用于电化学能量存储和转换的脉冲激光 3D-微/纳米结构材料的最新进展,重点是可充电电池、超级电容器和电催化剂。我们还提出了未来挑战的前景以及这项技术的机遇。目前还缺乏对技术进行分类和总结该领域发展趋势的综述。在此,我们全面回顾了用于电化学能量存储和转换的脉冲激光 3D-微/纳米结构材料的最新进展,重点是可充电电池、超级电容器和电催化剂。我们还提出了未来挑战的前景以及这项技术的机遇。目前还缺乏对技术进行分类和总结该领域发展趋势的综述。在此,我们全面回顾了用于电化学能量存储和转换的脉冲激光 3D-微/纳米结构材料的最新进展,重点是可充电电池、超级电容器和电催化剂。我们还提出了未来挑战的前景以及这项技术的机遇。

更新日期:2022-11-25
down
wechat
bug