当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fundamentals and advances of ligand field theory in understanding structure-electrochemical property relationship of intercalation-type electrode materials for rechargeable batteries
Progress in Materials Science ( IF 33.6 ) Pub Date : 2022-11-26 , DOI: 10.1016/j.pmatsci.2022.101055
Da Wang , Yao Jiao , Wei Shi , Bowei Pu , Fanghua Ning , Jin Yi , Yuan Ren , Jia Yu , Yajie Li , Hongxia Wang , Biao Li , Yutao Li , Cewen Nan , Liquan Chen , Siqi Shi

The ion-intercalation-based rechargeable batteries are emerging as the most efficient energy storage technology for electronic vehicles, grids, and portable devices. These devices require rechargeable batteries with higher energy–density than commercial Li-ion batteries, which are intrinsically limited by specific capacities and electrochemical potentials of transition-metal (M) electrode materials. Over the past decades, a significant number of studies have focused on exploring coordination environments and electronic origins of these materials based on ligand field theory (LFT). However, studies to understand and manipulate the relationship between their local-structural characteristics and electrochemical properties are limited. In this review, we comprehensively discussed how the combining of LFT and first-principles calculations can be used to derive Fermi levels that determine electrochemical potential, crystal field stabilization energy, and anionic redox activity. Based on this, a series of strategies are proposed to improve the phase-stability and energy–density of intercalation-type electrode materials, such as ion-intercalation potential tuning of rigid-band systems and electrode phase stability regulations with different M periods. Two high energy–density cathode materials, M-free LiBCF2 and Li-free group-VB/VIB MX2 (X = S, Se), are successfully designed from the aforementioned principles derived. Finally, we also highlight further directions for designing better intercalation-type materials based on LFT and their opportunities/challenges.



中文翻译:

配体场论在理解可充电电池插层型电极材料结构-电化学性能关系方面的基础和进展

基于离子嵌入的可充电电池正在成为电动汽车、电网和便携式设备最高效的储能技术。这些设备需要比商用锂离子电池具有更高能量密度的可充电电池,这在本质上受到过渡金属的比容量和电化学势的限制(M)电极材料。在过去的几十年中,大量研究集中于探索基于配体场理论 (LFT) 的这些材料的配位环境和电子起源。然而,了解和操纵其局部结构特征与电化学性质之间关系的研究是有限的。在这篇综述中,我们全面讨论了如何结合 LFT 和第一性原理计算来推导决定电化学势、晶场稳定能和阴离子氧化还原活性的费米能级。在此基础上,提出了一系列策略来提高插层型电极材料的相稳定性和能量密度,M期。两种高能量密度正极材料,M- free LiBCF 2和 Li-free group-VB/VIB MX 2 ( X  = S, Se),是根据上述推导的原理成功设计的。最后,我们还强调了基于 LFT 设计更好的插层型材料的进一步方向及其机遇/挑战。

更新日期:2022-11-26
down
wechat
bug