当前位置: X-MOL 学术Future Gener. Comput. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-Access Edge Computing assisted ultra-low energy scheduling and harvesting in multi-hop Wireless Sensor and Actuator Network for energy neutral self-sustainable Next-gen Cyber-Physical System
Future Generation Computer Systems ( IF 7.5 ) Pub Date : 2022-11-24 , DOI: 10.1016/j.future.2022.11.023
Ayaskanta Mishra , Arun Kumar Ray

Energy Neutrality is the need of the hour for future Cyber-physical infrastructure. Many past research works suggest low duty cycle networking for energy-efficient wireless sensor network; however, research problem still persist as these proposals have some practical deployment bottlenecks like sleep-latency and may trade-off with data-fidelity and Quality-of-Service (QoS) parameters. The research objective of this work is to propose a novel design for wireless sensor–actuator mote system to minimize energy consumption and compensate with harvesting to achieve energy neutral operation in multi-hop Wireless Sensor and Actuator Network (WSAN); A network scenario that is much needed for Internet of Thing (IoT) applications in future ready Next-gen Cyber Physical System (NG-CPS). In this paper, we have proposed a novel state-of-the-art Multi-Access/Mobile Edge Computing (MEC) assisted Low-Duty-Cycle Scheduling of Trans-Receiver for Store-Process-Then-Forward (LDCS-TR-SPTF) scheme in multi-hop WSAN for reducing the overall energy consumption. In addition to energy conservation, we have also proposed a hybrid harvesting to compensate energy to achieve energy neutral self-sustainable NG-CPS. The proposed novel LDCS-TR-SPTF has been implemented on multiple custom-made sensor–actuator motes equipped with ARM-based System-on-Chip (SoC) and IEEE 802.11 network interface. These motes are working both as end-nodes and relay nodes in a multi-hop WSAN testbed scenario for testing and validation of our proposed scheme. The results are promising with an overall energy conservation of 49.1% using our novel LDCS-TR-SPTF in comparison to stock IEEE 802.11. We have implemented solar energy harvester on wireless sensor–actuator motes to compensate the reduced energy consumption and achieved complete energy-neutrality. Motes are completely energy-autonomous in multi-hop WSAN scenario by eliminating the need of access to external power-grid for future cyber–physical system.



中文翻译:

多访问边缘计算辅助多跳无线传感器和执行器网络中的超低能量调度和收集,用于能源中性自持的下一代网络物理系统

能源中立是未来网络物理基础设施的迫切需要。许多过去的研究工作建议低占空比网络用于节能无线传感器网络;然而,研究问题仍然存在,因为这些提案存在一些实际部署瓶颈,如睡眠延迟,并且可能会与数据保真度和服务质量 (QoS) 参数进行权衡。这项工作的研究目标是为无线传感器-执行器微尘系统提出一种新颖的设计,以最大限度地减少能量消耗并通过收集进行补偿,以在多跳无线传感器和执行器网络 (WSAN) 中实现能量中性运行;未来就绪的下一代网络物理系统 (NG-CPS) 中物联网 (IoT) 应用程序非常需要的网络场景。在本文中,我们提出了一种新颖的最先进的多路访问/移动边缘计算 (MEC) 辅助低占空比调度传输接收器的存储处理然后转发 (LDCS-TR-SPTF) 方案多跳 WSAN,用于降低整体能耗。除了节能之外,我们还提出了一种混合收集来补偿能量,以实现能量中性的自持 NG-CPS。拟议的新型 LDCS-TR-SPTF 已在多个配备基于 ARM 的片上系统 (SoC) 和 IEEE 802.11 网络接口的定制传感器-执行器微尘上实现。这些微尘在多跳 WSAN 测试平台场景中作为端节点和中继节点工作,用于测试和验证我们提出的方案。与库存 IEEE 802 相比,使用我们的新型 LDCS-TR-SPTF 整体节能 49.1%,结果很有希望。11. 我们在无线传感器-执行器微尘上实施了太阳能收集器,以补偿减少的能源消耗并实现完全的能源中立。通过消除对未来网络物理系统访问外部电网的需要,微尘在多跳 WSAN 场景中是完全能源自主的。

更新日期:2022-11-24
down
wechat
bug