当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Clarifying the Relationship between the Lithium Deposition Coverage and Microstructure in Lithium Metal Batteries
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2022-11-23 , DOI: 10.1021/jacs.2c08849
Qidi Wang 1 , Chenglong Zhao 1 , Shuwei Wang 2 , Jianlin Wang 3 , Ming Liu 1 , Swapna Ganapathy 1 , Xuedong Bai 3 , Baohua Li 2 , Marnix Wagemaker 1
Affiliation  

Improving the reversibility of lithium metal batteries is one of the challenges in current battery research. This requires better fundamental understanding of the evolution of the lithium deposition morphology, which is very complex due to the various parameters involved in different systems. Here, we clarify the fundamental origins of lithium deposition coverage in achieving highly reversible and compact lithium deposits, providing a comprehensive picture in the relationship between the lithium microstructure and solid electrolyte interphase (SEI) for lithium metal batteries. Systematic variation of the salt concentration offers a framework that brings forward the different aspects that play a role in cycling reversibility. Higher nucleation densities are formed in lower concentration electrolytes, which have the advantage of higher lithium deposition coverage; however, it goes along with the formation of an organic-rich instable SEI which is unfavorable for the reversibility during (dis)charging. On the other hand, the growth of large deposits benefiting from the formation of an inorganic-rich stable SEI is observed in higher concentration electrolytes, but the initial small nucleation density prevents full coverage of the current collector, thus compromising the plated lithium metal density. Taking advantages of the paradox, a nanostructured substrate is rationally applied, which increases the nucleation density realizing a higher deposition coverage and thus more compact plating at intermediate concentration (∼1.0 M) electrolytes, leading to extended reversible cycling of batteries.

中文翻译:

阐明锂金属电池中锂沉积覆盖率与微观结构之间的关系

提高锂金属电池的可逆性是当前电池研究的挑战之一。这需要更好地了解锂沉积形态的演变,由于不同系统涉及各种参数,锂沉积形态非常复杂。在这里,我们阐明了锂沉积覆盖在实现高度可逆和致密锂沉积方面的基本起源,提供了锂金属电池的锂微观结构与固体电解质界面 (SEI) 之间关系的全面图景。盐浓度的系统变化提供了一个框架,提出了在循环可逆性中发挥作用的不同方面。在较低浓度的电解质中形成较高的成核密度,具有更高的锂沉积覆盖率的优势;然而,它伴随着富含有机物的不稳定 SEI 的形成,这不利于充电(放电)过程中的可逆性。另一方面,在较高浓度的电解质中观察到大沉积物的生长得益于富含无机物的稳定 SEI 的形成,但初始小的成核密度阻止了集电器的完全覆盖,从而损害了镀锂金属的密度。利用悖论,合理应用纳米结构基板,增加成核密度,实现更高的沉积覆盖率,从而在中间浓度(~1.0 M)电解质下实现更紧凑的电镀,从而延长电池的可逆循环。它伴随着富含有机物的不稳定 SEI 的形成,这不利于充电(放电)过程中的可逆性。另一方面,在较高浓度的电解质中观察到大沉积物的生长得益于富含无机物的稳定 SEI 的形成,但初始小的成核密度阻止了集电器的完全覆盖,从而损害了镀锂金属的密度。利用悖论,合理应用纳米结构基板,增加成核密度,实现更高的沉积覆盖率,从而在中间浓度(~1.0 M)电解质下实现更紧凑的电镀,从而延长电池的可逆循环。它伴随着富含有机物的不稳定 SEI 的形成,这不利于充电(放电)过程中的可逆性。另一方面,在较高浓度的电解质中观察到大沉积物的生长得益于富含无机物的稳定 SEI 的形成,但初始小的成核密度阻止了集电器的完全覆盖,从而损害了镀锂金属的密度。利用悖论,合理应用纳米结构基板,增加成核密度,实现更高的沉积覆盖率,从而在中间浓度(~1.0 M)电解质下实现更紧凑的电镀,从而延长电池的可逆循环。在较高浓度的电解质中观察到大沉积物的生长受益于富含无机物的稳定 SEI 的形成,但初始小的成核密度阻止了集电器的完全覆盖,从而损害了镀锂金属密度。利用悖论,合理应用纳米结构基板,增加成核密度,实现更高的沉积覆盖率,从而在中间浓度(~1.0 M)电解质下实现更紧凑的电镀,从而延长电池的可逆循环。在较高浓度的电解质中观察到大沉积物的生长受益于富含无机物的稳定 SEI 的形成,但初始小的成核密度阻止了集电器的完全覆盖,从而损害了镀锂金属密度。利用悖论,合理应用纳米结构基板,增加成核密度,实现更高的沉积覆盖率,从而在中间浓度(~1.0 M)电解质下实现更紧凑的电镀,从而延长电池的可逆循环。
更新日期:2022-11-23
down
wechat
bug