当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrafast synthesizing nanoflower-like composites of metal carbides and metal oxyhydroxides towards high-performance supercapacitors
Electrochimica Acta ( IF 6.6 ) Pub Date : 2022-11-21 , DOI: 10.1016/j.electacta.2022.141575
Yuming Dai , Hajera Gul , Chao Sun , Linghua Tan , Yue Guo , Waseem Raza , Arshad Hussain , Jiachen Pan , Mudassar Azam , Wenhui Zhu , Boyu Chen , Yuju Chen , Dongqian Huang , Jingwen Hua , Chengtong Ge , Jie Zhao

Because of their outstanding electrochemical performance and high theoretical specific capacity, metal oxyhydroxides or metal hydroxides have been paid significant attention as electrode materials for supercapacitors. Unfortunately, because of their poor conductivity, the experimental capacity is considerably lower than the theoretically expected value. Similarly, the use of 2D transition metal carbides (MXene) in energy storage electronic devices has also drawn research attention. However, its self-restacking makes it difficult for electrolyte ions to reach the material's active sites. Therefore, in this research work, an ultrafast one-step method for the synthesis of 3D nanoflower-like MXene/metal oxyhydroxide composites has been proposed. Composite materials synergistically combine the high theoretical capacity of metal oxyhydroxides with good electrical conductivity of MXene, resulting in excellent supercapacitive performance. The resulting composite delivered the highest specific capacity of 955.08 C/g at a scan rate of 5 mV/s and its maximum energy density of 32.13 Wh/kg is attained at a power density of 324.97 kW/kg due to synergistic combination of MXene and metal oxyhydroxides. Furthermore, the capacity retention rate at 1 A/g current density is as high as 84.1% after ultralong 100,000 cycles. Due to the excellent performance of synthesized 3D nanoflower-like MXene/metal oxyhydroxide composites, it can be used for electrode materials fabrication with enhanced energy storage properties for supercapacitors to fulfill energy needs.



中文翻译:

超快合成金属碳化物和金属氢氧化物的纳米花状复合材料用于高性能超级电容器

由于其优异的电化学性能和高理论比容量,金属羟基氧化物或金属氢氧化物作为超级电容器的电极材料受到了极大的关注。不幸的是,由于它们的导电性差,实验容量大大低于理论预期值。同样,二维过渡金属碳化物(MXene)在储能电子设备中的应用也引起了研究关注。然而,它的自我重组使得电解质离子难以到达材料的活性位点。因此,在这项研究工作中,提出了一种用于合成 3D 纳米花状 MXene/金属氢氧化物复合材料的超快一步法。复合材料将金属羟基氧化物的高理论容量与 MXene 的良好导电性协同结合,从而产生出色的超级电容性能。由于 MXene 和金属氢氧化物。此外,在1 A/g电流密度下,超长10万次循环后容量保持率高达84.1%。由于合成的 3D 纳米花状 MXene/金属氢氧化物复合材料的优异性能,它可用于制造具有增强的超级电容器储能性能的电极材料,以满足能源需求。从而获得出色的超级电容性能。由于 MXene 和金属氢氧化物。此外,在1 A/g电流密度下,超长10万次循环后容量保持率高达84.1%。由于合成的 3D 纳米花状 MXene/金属氢氧化物复合材料的优异性能,它可用于制造具有增强的超级电容器储能性能的电极材料,以满足能源需求。从而获得出色的超级电容性能。由于 MXene 和金属氢氧化物。此外,在1 A/g电流密度下,超长10万次循环后容量保持率高达84.1%。由于合成的 3D 纳米花状 MXene/金属氢氧化物复合材料的优异性能,它可用于制造具有增强的超级电容器储能性能的电极材料,以满足能源需求。由于 MXene 和金属羟基氧化物的协同组合,在 324.97 kW/kg 的功率密度下达到 13 Wh/kg。此外,在1 A/g电流密度下,超长10万次循环后容量保持率高达84.1%。由于合成的 3D 纳米花状 MXene/金属氢氧化物复合材料的优异性能,它可用于制造具有增强的超级电容器储能性能的电极材料,以满足能源需求。由于 MXene 和金属羟基氧化物的协同组合,在 324.97 kW/kg 的功率密度下达到 13 Wh/kg。此外,在1 A/g电流密度下,超长10万次循环后容量保持率高达84.1%。由于合成的 3D 纳米花状 MXene/金属氢氧化物复合材料的优异性能,它可用于制造具有增强的超级电容器储能性能的电极材料,以满足能源需求。

更新日期:2022-11-22
down
wechat
bug