当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Behavioural responses of zebrafish with sound stimuli in microfluidics
Lab on a Chip ( IF 6.1 ) Pub Date : 2022-11-18 , DOI: 10.1039/d2lc00758d
Dineshkumar Loganathan , Shu-Heng Wu , Chia-Yuan Chen

Neuronal activities of the human brain responsible for cognitive features have been theorized through several animal models that exhibited various complementary spatial learning modes by generating a flexible repertoire of behavioral strategies. However, for such studies associated with a neurodegenerative disease, which can be further manipulated to provide therapeutic strategies, the animal models employed in their developmental stages have been preferred over the adult ones. This pilot work was incepted to underscore the spatial memory capabilities that strengthened the intricate mechanism of memory acquisition potential in one of the low-order evolutionarily conserved species, such as zebrafish larvae. Initially, a reliable and more easily reproducible microfluidic platform integrating simple and intricate paths was designed to learn and test the spatial information in zebrafish larvae of 4–6 d.p.f. under non-invasive acoustic stimuli. Further, to acquire spatial information as the representation of spatial memory formation in zebrafish larvae, the acoustic startle responses were evaluated by quantifying various dynamic behaviors under distinct operating parameters. After significant conditioning sessions, the spatial memory was tested by employing variable ‘freezing’. By the end of the 30 min-long test session, 6 d.p.f. larvae were found to exhibit the highest value of freezing of approximately 43% and 20% in the short and long paths, respectively. Even though a substantial rate of memory loss was observed, it can be envisaged to serve several behavioral strategies that process the dynamic cognitive memory among distinct spatiotemporal environments. Further, the proposed behavioral paradigm had the advantage of being more adaptable and reliably replicable by other researchers. As a consequence, different hypotheses can be readily tested to generate more reproducible findings towards distinct neurobehavioral characteristics. Therefore, the proposed paradigm for the consolidation of spatial memory based on the non-invasive spatial avoidance strategies could provide an enduring framework of reference for behavioral studies using zebrafish larvae.

中文翻译:

斑马鱼在微流体中对声音刺激的行为反应

人类大脑负责认知特征的神经元活动已经通过几种动物模型进行了理论化,这些动物模型通过产生灵活的行为策略库展示了各种互补的空间学习模式。然而,对于与神经退行性疾病相关的此类研究,可以进一步操纵以提供治疗策略,在其发育阶段使用的动物模型优于成人模型。这项试点工作旨在强调空间记忆能力,这种能力加强了一种低阶进化保守物种(如斑马鱼幼虫)的记忆获取潜力的复杂机制。最初,一个可靠且更容易重现的微流体平台集成了简单和复杂的路径,旨在学习和测试 4-6 dpf 斑马鱼幼虫在非侵入性声学刺激下的空间信息。此外,为了获取空间信息作为斑马鱼幼虫空间记忆形成的表示,通过量化不同操作参数下的各种动态行为来评估声惊吓反应。在显着调节会话后,通过使用变量“冻结”来测试空间记忆。在 30 分钟长的测试会话结束时,发现 6 个 dpf 幼虫在短路径和长路径中分别表现出大约 43% 和 20% 的最高冻结值。即使观察到显着的记忆丧失率,可以设想它可以服务于处理不同时空环境中的动态认知记忆的几种行为策略。此外,所提出的行为范式具有更具适应性和可靠地被其他研究人员复制的优势。因此,可以很容易地测试不同的假设,以针对不同的神经行为特征产生更多可重复的发现。因此,所提出的基于非侵入性空间回避策略的空间记忆巩固范例可以为使用斑马鱼幼虫的行为研究提供持久的参考框架。拟议的行为范式具有适应性更强、更可靠地被其他研究人员复制的优势。因此,可以很容易地测试不同的假设,以针对不同的神经行为特征产生更多可重复的发现。因此,所提出的基于非侵入性空间回避策略的空间记忆巩固范例可以为使用斑马鱼幼虫的行为研究提供持久的参考框架。拟议的行为范式具有适应性更强、更可靠地被其他研究人员复制的优势。因此,可以很容易地测试不同的假设,以针对不同的神经行为特征产生更多可重复的发现。因此,所提出的基于非侵入性空间回避策略的空间记忆巩固范例可以为使用斑马鱼幼虫的行为研究提供持久的参考框架。
更新日期:2022-11-18
down
wechat
bug