当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic hot carrier injection from single gold nanoparticles into topological insulator Bi2Se3 nanoribbons
Nanoscale ( IF 5.8 ) Pub Date : 2022-11-16 , DOI: 10.1039/d2nr05212a
Christian Nweze 1 , Tomke E Glier 1 , Mika Rerrer 1 , Sarah Scheitz 1 , Yalan Huang 2 , Robert Zierold 2 , Robert Blick 2 , Wolfgang J Parak 2 , Nils Huse 2 , Michael Rübhausen 1
Affiliation  

Plasmonic gold nanoparticles injecting hot carriers into the topological insulator (TI) interface of Bi2Se3 nanoribbons are studied by resonant Raman spectroscopy. We resolve the impact of individual gold particles with sizes ranging from 140 nm down to less than 40 nm on the topological surface states of the nanoribbons. In resonance at 1.96 eV (633 nm), we find distinct phonon renormalization in the Eg2- and A1g2-modes that can be associated with plasmonic hot carrier injection. The phonon modes are strongly enhanced by a factor of 350 when tuning the excitation wavelengths into interband transition and in resonance with the surface plasmon of gold nanoparticles. At 633 nm wavelength, a plasmonic enhancement factor of 18 is observed indicating a contribution of hot carriers injected from the gold nanoparticles into the TI interface. Raman studies as a function of gold nanoparticle size reveal the strongest hot carrier injection for particles with size of 108 nm in agreement with the resonance energy of its surface plasmon. Hot carrier injection opens the opportunity to locally control the electronic properties of the TI by metal nanoparticles attached to the surface of nanoribbons.

中文翻译:

从单个金纳米粒子到拓扑绝缘体 Bi2Se3 纳米带的等离子体热载流子注入

通过共振拉曼光谱研究了将热载流子注入 Bi 2 Se 3纳米带的拓扑绝缘体 (TI) 界面的等离子体金纳米粒子。我们解决了尺寸从 140 nm 到小于 40 nm 的单个金颗粒对纳米带拓扑表面状态的影响。在 1.96 eV (633 nm) 的共振中,我们发现 E g 2 - 和 A 1g 2中明显的声子重整化-可以与等离子体热载流子注入相关联的模式。当将激发波长调谐到带间跃迁并与金纳米粒子的表面等离子体激元共振时,声子模式强烈增强了 350 倍。在 633 nm 波长处,观察到等离子体增强因子为 18,表明热载流子从金纳米粒子注入 TI 界面的贡献。作为金纳米颗粒尺寸函数的拉曼研究揭示了尺寸为 108 nm 的颗粒的最强热载流子注入与其表面等离子体的共振能量一致。热载流子注入为通过附着在纳米带表面的金属纳米粒子局部控制 TI 的电子特性提供了机会。
更新日期:2022-11-16
down
wechat
bug