当前位置: X-MOL 学术Dalton Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flux-assisted synthesis of bismuth nanoparticle decorated carbon nitride for efficient photocatalytic degradation of endocrine disrupting compound
Dalton Transactions ( IF 3.5 ) Pub Date : 2022-11-14 , DOI: 10.1039/d2dt02900f
Bin Zheng 1 , Wu Cui 1 , Fengting He 1 , Yang Zhang 1 , Shuling Wang 1 , Yangming Lu 1 , Chaocheng Zhao 1 , Jinqiang Zhang 2 , Xiaoguang Duan 2 , Hongqi Sun 3 , Shuaijun Wang 4
Affiliation  

Traditional approaches to synthesizing bismuth nanoparticle decorated carbon nitride (C3N4) materials suffer from the complex synthesis process and the addition of a surfactant, which is not conducive to environmental protection. To address these problems, we adopted a simple and green flux-assisted approach for the first time to fabricate metallic bismuth nanoparticle decorated C3N4 (BiCCN). Electron microscopy results suggested that bismuth vanadate was converted into small bismuth nanoparticles via the flux-assisted approach. Highly dispersed Bi nanoparticles dramatically intensify light absorption, facilitate spatial charge separation as electron acceptors, shorten the charge diffusion length, and reserve more active sites for generating reactive species via surface photo-redox reactions. Consequently, the derived optimized photocatalyst BiCCN-15 rendered around 26 times higher photocatalytic degradation efficiency toward an endocrine disrupting compound (bisphenol A) than C3N4. This work provides a novel approach for developing non-precious metal decorated photocatalytic materials for sustainable water decontamination.

中文翻译:

助焊剂合成铋纳米颗粒修饰的氮化碳,用于高效光催化降解内分泌干扰化合物

传统合成铋纳米粒子修饰的氮化碳(C 3 N 4)材料的方法存在合成过程复杂和添加表面活性剂等问题,不利于环保。为了解决这些问题,我们首次采用了一种简单且绿色的助焊剂辅助方法来制备金属铋纳米粒子装饰的 C 3 N 4 (BiCCN)。电子显微镜结果表明,钒酸铋通过以下方式转化为小的铋纳米颗粒通量辅助方法。高度分散的 Bi 纳米颗粒显着增强了光吸收,促进了作为电子受体的空间电荷分离,缩短了电荷扩散长度,并为通过表面光氧化还原反应产生活性物质保留了更多的活性位点。因此,衍生的优化光催化剂 BiCCN-15 对内分泌干扰化合物(双酚 A)的光催化降解效率比 C 3 N 4高约 26 倍。这项工作为开发用于可持续水净化的非贵金属装饰光催化材料提供了一种新方法。
更新日期:2022-11-14
down
wechat
bug