当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulations of a full sonoreactor accounting for cavitation
Ultrasonics Sonochemistry ( IF 8.7 ) Pub Date : 2022-11-11 , DOI: 10.1016/j.ultsonch.2022.106226
Igor Garcia-Vargas 1 , Laurie Barthe 2 , Pascal Tierce 3 , Olivier Louisnard 4
Affiliation  

In spite of the increasing interest in ultrasound processing applications, industrial scale-up remains limited, in particular by the unavailability of predictive computer tools. In this study, using a previously published model of cavitating liquids implementable as a non-linear Helmholtz equation, it is shown that a full sonoreactor can be modelled and simulated. The model includes the full transducer and the vibrations of the vessel walls, using the physics of elastic solids and piezo-electricity. The control-loop used by the generator to set the optimal frequency is also accounted for. Apart from the geometry, the unique input of the model is the current feeding the transducer whereas the dissipated electrical power, transducer complex impedance and working frequency are available as outputs. The model is put to the test against experiments realized in different geometries, varying either the input current or the transducer immersion depth. Despite the overestimation of the power dissipated in the liquid, the evolution of the acoustic load in both cases is reasonably well reproduced by simulation, which partially validates the method used.



中文翻译:


考虑空化的完整声反应器的模拟



尽管人们对超声处理应用的兴趣日益浓厚,但工业规模扩大仍然受到限制,特别是由于预测计算机工具的不可用。在这项研究中,使用先前发布的可作为非线性亥姆霍兹方程实现的空化液体模型,表明可以对完整的声反应器进行建模和模拟。该模型包括完整的换能器和血管壁的振动,利用弹性固体和压电的物理原理。发电机用来设置最佳频率的控制环路也被考虑在内。除了几何形状之外,模型的独特输入是馈送换能器的电流,而耗散电功率、换能器复阻抗和工作频率可作为输出。该模型针对不同几何形状、改变输入电流或换能器浸入深度的实验进行了测试。尽管高估了液体中耗散的功率,两种情况下声载荷的演变都可以通过模拟很好地再现,这部分验证了所使用的方法。

更新日期:2022-11-16
down
wechat
bug