当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconstruction of LiF-rich interphases through an anti-freezing electrolyte for ultralow-temperature LiCoO2 batteries
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2022-11-11 , DOI: 10.1039/d2ee02411j
Jipeng Liu 1, 2, 3 , Botao Yuan 1 , Niandong He 1 , Liwei Dong 2 , Dongjiang Chen 1 , Shijie Zhong 1 , Yuanpeng Ji 2 , Jiecai Han 1 , Chunhui Yang 2, 3 , Yuanpeng Liu 1 , Weidong He 1, 4, 5
Affiliation  

The lowest operational temperature of commercial graphite‖LiCoO2 (LCO) batteries is limited to ∼−20 °C due to the high reaction energy barrier of Li+ in the interlayers of the graphite anode and the unstable solid electrolyte interphase (SEI) forming at low temperatures. Lithium (Li) metal with ideally host-less nature is expected to support the low-temperature operation of the LCO cathode, but low-temperature applications of Li‖LCO batteries are severely challenged with disastrous issues of conventional electrolytes including the high solvation structure of Li+, low desolvation energy, low Li+ saturation concentration, and LiF-barren SEI and cathode electrolyte interphase (CEI) (below 7%) with a small Li+ conductivity and diffusion coefficient. Here, using iso-butyl formate (IF) as an anti-freezing agent with an ultralow melting point of −132 °C and an ultralow viscosity of 0.30 Pa s, a fluorine–sulfur electrolyte is designed to achieve a low-coordination number (0.07), high desolvation energy (−27.97 eV) and high Li+ saturation concentration (1.40 × 10−10 mol s−1) electrolyte, which enables efficient reversible transport of Li+ and formation of abundant F radicals to construct stable LiF-rich SEI (10.48%) and CEI (17.91%) layers with large Li+ conductivities (1.00 × 10−5 mS cm−1 and 6.65 × 10−5 mS cm−1) and large diffusion coefficients (1.10 × 10−21 m2 s−1 and 2.07 × 10−20 m2 s−1). With the electrolyte, Li‖LCO batteries deliver unprecedented cyclic performances at −70 °C including a stable capacity of 110 mA h g−1 over 170 cycles. The work provides an opportunity for developing ultralow-temperature LCO batteries.

中文翻译:

通过超低温 LiCoO2 电池的抗冻电解质重建富含 LiF 的中间相

由于石墨负极层间Li + 的高反应能垒在低温。具有理想无主体性质的锂 (Li) 金属有望支持 LCO 阴极的低温运行,但 Li‖LCO 电池的低温应用受到传统电解质灾难性问题的严峻挑战,包括高溶剂化结构Li +,去溶剂化能低,Li +饱和浓度低,LiF贫乏SEI和正极电解质界面(CEI)(低于7%), Li +含量低电导率和扩散系数。在这里,使用甲酸异丁酯(IF)作为防冻剂,具有-132°C的超低熔点和0.30 Pa·s的超低粘度,氟硫电解质被设计为实现低配位数( 0.07)、高去溶剂能(−27.97 eV)和高Li +饱和浓度(1.40 × 10 −10 mol s −1 )电解质,可实现Li +的高效可逆传输和大量F自由基的形成,从而构建稳定的富LiF SEI (10.48%) 和 CEI (17.91%) 层具有大的 Li +电导率(1.00 × 10 -5 mS cm -1和 6.65 × 10 -5 mS cm -1) 和大扩散系数(1.10 × 10 −21 m 2 s −1和 2.07 × 10 −20 m 2 s −1)。使用电解质,Li‖LCO 电池在 −70 °C 下提供前所未有的循环性能,包括在 170 次循环中稳定容量为 110 mA hg −1 。该工作为开发超低温LCO电池提供了机会。
更新日期:2022-11-11
down
wechat
bug