当前位置: X-MOL 学术Soil › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Soil minerals mediate climatic control of soil C cycling on annual to centennial timescales
Soil ( IF 6.8 ) Pub Date : 2022-11-11 , DOI: 10.5194/egusphere-2022-1083
Jeffrey Prescott Beem-Miller , Craig Rasmussen , Alison May Hoyt , Marion Schrumpf , Georg Guggenberger , Susan Trumbore

Abstract. Climate and parent material both affect soil C persistence, yet the relative importance of climatic versus mineralogical controls on soil C dynamics remains unclear. To test this, we collected soil samples in 2001, 2009, and 2019 along a combined gradient of parent material (andesite, basalt, granite) and climate (mean annual temperature (MAT): 6.5 °C “cold”, 8.6 °C “cool”, 12.0 °C “warm”). We measured the radiocarbon of heterotrophically respired CO2 (∆14Crespired) and bulk soil C (∆14Cbulk) as proxies for transient and persistent soil C, and characterized mineral assemblages using selective dissolution. Using linear regression, we observed that MAT was not a significant predictor of either ∆14Cbulk or ∆14Crespired, yet climate was highly significant as a categorical variable. Climate explained more variance in ∆14Cbulk and ∆14Crespired over 0–0.1 m, but parent material explained more from 0.1–0.3 m. Cool site soil C was more persistent (lower ∆14Cbulk) than cold or warm climate sites, and also more persistent on andesitic soils, followed by basaltic and then granitic soils. Poorly crystalline metal oxides (PCMs) (but not crystalline metal oxides) were significantly (p < 0.1) correlated with ∆14Cbulk, ∆14Crespired, and ∆14Crespired - ∆14Cbulk, indicating their importance for soil C cycling on both short and long timescales. The change in ∆14Crespired observed over the study period was linearly related to MAT for the granite soils with the lowest PCM content, but not in the andesitic and basaltic soils with higher PCM content. This link between PCM abundance and the decoupling of MAT and soil C cycling rates suggests PCMs may attenuate the temperature sensitivity of decomposition.

中文翻译:

土壤矿物质在每年到百年时间尺度上调节土壤碳循环的气候控制

摘要。气候和母质都会影响土壤碳的持久性,但气候与矿物学控制对土壤碳动态的相对重要性仍不清楚。为了测试这一点,我们在 2001 年、2009 年和 2019 年沿母质(安山岩、玄武岩、花岗岩)和气候(年平均温度 (MAT):6.5°C“冷”、8.6°C“冷”,12.0 °C“暖”)。我们测量了异养呼吸的 CO 2 (∆ 14 C respired ) 和散装土壤 C (∆ 14 C bulk) 作为瞬时和持久土壤 C 的代表,并使用选择性溶解来表征矿物组合。使用线性回归,我们观察到 MAT 不是 ∆ 14 C bulk或 ∆ 14 C respired的显着预测因子,但气候作为分类变量非常重要。气候解释了 Δ 14 C体积和 Δ 14 C在 0-0.1 m 范围内呼吸的更多变化,但母质在 0.1-0.3 m 范围内解释更多。凉爽的场地土壤 C 更持久(较低的 Δ 14 C体积) 比寒冷或温暖的气候地点更持久,并且在安山质土壤上更持久,其次是玄武质土壤,然后是花岗岩土壤。结晶性差的金属氧化物 (PCM)(但不是结晶金属氧化物)与 Δ 14 C体积、Δ 14 C呼吸和 Δ 14 C呼吸- Δ 14 C体积显着相关(p < 0.1) ,表明它们对土壤 C 的重要性在短期和长期的时间尺度上循环。Δ 14 C呼吸的变化对于 PCM 含量最低的花岗岩土壤,在研究期间观察到的 MAT 与 MAT 呈线性相关,但在 PCM 含量较高的安山岩和玄武岩土壤中则没有。PCM 丰度与 MAT 和土壤 C 循环速率之间的这种联系表明 PCM 可能会减弱分解的温度敏感性。
更新日期:2022-11-11
down
wechat
bug