当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Readout-efficient superconducting nanowire single-photon imager with orthogonal time–amplitude multiplexing by hotspot quantization
Nature Photonics ( IF 32.3 ) Pub Date : 2022-10-27 , DOI: 10.1038/s41566-022-01089-6
Ling-Dong Kong , Hui Wang , Qing-Yuan Zhao , Jia-Wei Guo , Yang-Hui Huang , Hao Hao , Shi Chen , Xue-Cou Tu , La-Bao Zhang , Xiao-Qing Jia , Lin Kang , Jian Chen , Pei-Heng Wu

Scaling superconducting nanowire single-photon detectors into a large array to obtain imaging capability is desired for applications in photon-starved conditions, considering the outstanding performance already demonstrated on a single detector. However, this is challenging because the ultralow operation temperature only allows specific electronics of ultralow power dissipation to work. Here we develop a kilopixel imager by introducing an orthogonal time–amplitude-multiplexing method. This readout is solely built in the superconducting nanowire by geometrically designing the nanowire structure to manipulate its hotspot growth and microwave propagation after photon detection. As a result, pixel locations are encoded on both time and amplitude domains of the output pulses. This dual multiplexing method overcomes the previous limitation of a time-multiplexing readout, where the time measurement uncertainty deteriorates the spatial resolution and scalability. Experimentally, with two readout lines, we have demonstrated a 32 × 32 imager with an average readout pixel fidelity of 97% and an average temporal resolution of 67.3 ps. The performance of this imager is further verified by single-photon imaging experiments at a low photon flux down to one detected photon per pixel. This orthogonal time–amplitude-multiplexing readout and corresponding nanowire designs give the most efficient readout compared with previous methods, which would speed up the development of large-scale single-photon imagers for quantum measurements, remote sensing, astronomical telescopes and so on.



中文翻译:

通过热点量化进行正交时幅复用的高效读出超导纳米线单光子成像仪

考虑到已经在单个探测器上展示的出色性能,将超导纳米线单光子探测器缩放成大阵列以获得成像能力对于在光子匮乏条件下的应用来说是理想的。然而,这是具有挑战性的,因为超低的工作温度只允许超低功耗的特定电子设备工作。在这里,我们通过引入正交时间幅度复用方法来开发千像素成像仪。该读数仅通过对纳米线结构进行几何设计以在光子检测后控制其热点生长和微波传播而内置在超导纳米线中。因此,像素位置在输出脉冲的时域和幅度域上都被编码。这种双重复用方法克服了时间复用读数的先前限制,其中时间测量不确定性会降低空间分辨率和可扩展性。实验上,我们用两条读出线展示了一个 32 × 32 的成像器,平均读出像素保真度为 97%,平均时间分辨率为 67.3 ps。该成像仪的性能通过单光子成像实验得到进一步验证,该实验在低光子通量下低至每像素一个检测到的光子。与以前的方法相比,这种正交时幅复用读出和相应的纳米线设计提供了最有效的读出,这将加速用于量子测量、遥感、天文望远镜等的大规模单光子成像仪的发展。其中时间测量的不确定性会降低空间分辨率和可扩展性。实验上,我们用两条读出线展示了一个 32 × 32 的成像器,平均读出像素保真度为 97%,平均时间分辨率为 67.3 ps。该成像仪的性能通过单光子成像实验得到进一步验证,该实验在低光子通量下低至每像素一个检测到的光子。与以前的方法相比,这种正交时幅复用读出和相应的纳米线设计提供了最有效的读出,这将加速用于量子测量、遥感、天文望远镜等的大规模单光子成像仪的发展。其中时间测量的不确定性会降低空间分辨率和可扩展性。实验上,我们用两条读出线展示了一个 32 × 32 的成像器,平均读出像素保真度为 97%,平均时间分辨率为 67.3 ps。该成像仪的性能通过单光子成像实验得到进一步验证,该实验在低光子通量下低至每像素一个检测到的光子。与以前的方法相比,这种正交时幅复用读出和相应的纳米线设计提供了最有效的读出,这将加速用于量子测量、遥感、天文望远镜等的大规模单光子成像仪的发展。我们展示了一个 32 × 32 的成像器,其平均读出像素保真度为 97%,平均时间分辨率为 67.3 ps。该成像仪的性能通过单光子成像实验得到进一步验证,该实验在低光子通量下低至每像素一个检测到的光子。与以前的方法相比,这种正交时幅复用读出和相应的纳米线设计提供了最有效的读出,这将加速用于量子测量、遥感、天文望远镜等的大规模单光子成像仪的发展。我们展示了一个 32 × 32 的成像器,其平均读出像素保真度为 97%,平均时间分辨率为 67.3 ps。该成像仪的性能通过单光子成像实验得到进一步验证,该实验在低光子通量下低至每像素一个检测到的光子。与以前的方法相比,这种正交时幅复用读出和相应的纳米线设计提供了最有效的读出,这将加速用于量子测量、遥感、天文望远镜等的大规模单光子成像仪的发展。

更新日期:2022-10-28
down
wechat
bug