当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dissolved air effects on three-phase hydrodynamic cavitation in large scale Venturi- Experimental/numerical analysis
Ultrasonics Sonochemistry ( IF 8.4 ) Pub Date : 2022-10-11 , DOI: 10.1016/j.ultsonch.2022.106199
Emad Hasani Malekshah 1 , Włodzimierz Wróblewski 1 , Mirosław Majkut 1
Affiliation  

Hydrodynamic cavitation (HC) in the Venturi nozzle, apart from the harmful influence on the devices, can be used to improve a range of industrial processes, such as biofuel generation, emulsion preparation, and wastewater treatment. The present investigation deals with the influence of dissolved air in Venturi cavitating flow based on numerical and experimental approaches. The experimental campaigns have been done in a closed-loop water tunnel equipped with a Venturi test section. The post-processing techniques such as Fast Fourier Transform (FFT), Power Spectral Density (PSD), temporal/spatial Grey Level distribution and mean value grey level distribution are employed to analyse the experimental observations and measurement. The URANS numerical method is modified based on the Density Corrected-Based Model (DCM) to be more adaptable for flows with high differences in density. The results approve the remarkable effect of dissolved air on the configuration of the cavity, its evolution process, and transient/averaged characteristics. It is observed that the incipient point and ratio of sheet cavity length to cloud cavity length are changed. Furthermore, the flow velocity inside of the sheet and cloud cavities is different; as well as, the higher content of dissolved air leads to slower flow velocity inside the cloud cavity. In addition, the shedding frequency is significantly reduced in case of higher level of air content.



中文翻译:

溶解空气对大型文丘里管中三相流体动力空化的影响-实验/数值分析

文丘里喷嘴中的流体动力空化 (HC) 除了对设备产生有害影响外,还可用于改进一系列工业过程,例如生物燃料生产、乳液制备和废水处理。本研究基于数值和实验方法处理溶解空气对文丘里空化流的影响。实验活动是在配备文丘里测试部分的闭环水隧道中进行的。采用快速傅里叶变换(FFT)、功率谱密度(PSD)、时间/空间灰度分布和均值灰度分布等后处理技术对实验观察和测量进行分析。URANS 数值方法在基于密度校正的模型 (DCM) 的基础上进行了修改,以更适用于密度差异较大的流动。结果证实了溶解空气对空腔结构、演化过程和瞬态/平均特性的显着影响。观察到初始点和片腔长度与云腔长度的比率发生了变化。此外,薄片和云腔内部的流速不同;此外,较高的溶解空气含量导致云腔内的流速较慢。此外,在空气含量较高的情况下,脱落频率会显着降低。和瞬态/平均特性。观察到初始点和片腔长度与云腔长度的比率发生了变化。此外,薄片和云腔内部的流速不同;此外,较高的溶解空气含量导致云腔内的流速较慢。此外,在空气含量较高的情况下,脱落频率会显着降低。和瞬态/平均特性。观察到初始点和片腔长度与云腔长度的比率发生了变化。此外,薄片和云腔内部的流速不同;此外,较高的溶解空气含量导致云腔内的流速较慢。此外,在空气含量较高的情况下,脱落频率会显着降低。

更新日期:2022-10-14
down
wechat
bug