当前位置: X-MOL 学术Chem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular engineering of interplanar spacing via π-conjugated phenothiazine linkages for high-power 2D covalent organic framework batteries
Chem ( IF 19.1 ) Pub Date : 2022-10-04 , DOI: 10.1016/j.chempr.2022.09.015
Weiping Li , Wen Xie , Fei Shao , Ju Qian , Shantao Han , Peng Wen , Jun Lin , Mao Chen , Xinrong Lin

Two-dimensional covalent organic frameworks (2D-COFs) represent an attractive platform for organic electrodes, yet they suffer from inferior power capability caused by poor Li+ intercalation in densely π-π stacked interlayers. Herein, featuring nonplanar π-conjugated heteroaromatic linkages, phenothiazine with “butterfly” conformation is integrated as a structural scaffold to instantly tune packing topology and interplanar distance. Corrugated 2D-COF maintaining aromaticity and crystallinity is formed with good electroactivity, enlarged d-spacing, and accessibility to interior Li+-interactive sites, which results in remarkable capacity of 220–773 mAh g−1 at high rates ranging from 100 to 3,200 mA g−1 with a good cycle life, bridging the performance gap between power and energy. Mechanistic studies reveal a dual storage mechanism with dominating capacitive storage promoted by π-Li+ interactions, as well as enhanced redox activity of carbonyls for better chemical accessibility. These findings elucidate inherent effects of molecular-level d-spacing regulation enabled by heteroaromatics, presenting a new design concept of interlayer engineering for organic porous energy storage materials.



中文翻译:

用于高功率二维共价有机框架电池的 π 共轭吩噻嗪键晶面间距的分子工程

二维共价有机框架 (2D-COF) 代表了有机电极的一个有吸引力的平台,但由于 Li +在密集的 π-π 堆叠夹层中的嵌入不良,它们的功率能力较差。在此,具有非平面 π- 共轭杂芳基键,具有“蝴蝶”构象的吩噻嗪被集成为结构支架,以立即调整堆积拓扑和面间距离。形成保持芳香性和结晶性的波纹状 2D-COF,具有良好的电活性、更大的 d 间距和内部 Li +相互作用位点的可及性,导致在100 至 3,200 的高倍率下具有 220–773 mAh g −1的显着容量毫安·克-1具有良好的循环寿命,弥合了功率和能量之间的性能差距。机理研究揭示了由 π-Li +相互作用促进的主导电容存储的双重存储机制,以及增强的羰基氧化还原活性以获得更好的化学可及性。这些发现阐明了杂芳烃分子水平 d 间距调控的内在效应,提出了有机多孔储能材料层间工程的新设计理念。

更新日期:2022-10-04
down
wechat
bug