当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photochemical Strategies Enable the Synthesis of Tunable Azetidine-Based Energetic Materials
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2022-10-05 , DOI: 10.1021/jacs.2c08191
Katie A Rykaczewski 1 , Marc R Becker 1 , Manasi J Anantpur 1 , Rosario C Sausa 2 , Eric C Johnson 3 , Joshua A Orlicki 4 , Eric J Bukowski 3 , Jesse J Sabatini 3 , Corinna S Schindler 1
Affiliation  

Despite their favorable properties, azetidines are often overlooked as lead compounds across multiple industries. This is often attributed to the challenging synthesis of densely functionalized azetidines in an efficient manner. In this work, we report the scalable synthesis and characterization of seven azetidines with varying regio- and stereochemistry and their application as novel azetidine-based energetic materials, enabled by the visible-light-mediated aza Paternò–Büchi reaction. The performance and stark differences in the physical properties of these new compounds make them excellent potential candidates as novel solid melt-castable explosive materials, as well as potential liquid propellant plasticizers. This work highlights the scalability and utility of the visible-light aza Paternò–Büchi reaction and demonstrates the impact of stereochemical considerations on the physical properties of azetidine-based energetics. Considering the versatility and efficiency of the presented synthetic strategies, we expect that this work will guide the development of new azetidine-based materials in the energetics space as well as other industries.

中文翻译:

光化学策略能够合成基于氮杂环丁烷的可调高能材料

尽管具有良好的特性,但氮杂环丁烷在多个行业中作为先导化合物经常被忽视。这通常归因于以有效方式合成密集官能化氮杂环丁烷具有挑战性。在这项工作中,我们报告了七种具有不同区域和立体化学的氮杂环丁烷的可扩展合成和表征,以及它们作为新型氮杂环丁烷基高能材料的应用,这是通过可见光介导的aza Paternò-Büchi 反应实现的。这些新化合物的性能和物理性质的明显差异使其成为新型固体可熔铸炸药材料以及潜在的液体推进剂增塑剂的极好潜在候选者。这项工作突出了可见光氮杂的可扩展性和实用性Paternò-Büchi 反应,并展示了立体化学因素对氮杂环丁烷基能量学物理性质的影响。考虑到所提出的合成策略的多功能性和效率,我们预计这项工作将指导新的氮杂环丁烷基材料在能量学领域以及其他行业的开发。
更新日期:2022-10-05
down
wechat
bug