当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pharmaceutical Biotransformation is Influenced by Photosynthesis and Microbial Nitrogen Cycling in a Benthic Wetland Biomat
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2022-10-05 , DOI: 10.1021/acs.est.2c03566
Michael A P Vega 1, 2 , Rachel C Scholes 2, 3 , Adam R Brady 1, 2 , Rebecca A Daly 4 , Adrienne B Narrowe 4 , Lily B Bosworth 2, 5 , Kelly C Wrighton 4 , David L Sedlak 2, 3 , Jonathan O Sharp 1, 2, 5
Affiliation  

In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic–anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.

中文翻译:

底栖湿地生物垫中光合作用和微生物氮循环对药物生物转化的影响

在浅水、开放水域工程湿地中,设计参数选择能够进行强大的药物生物转化的光合微生物生物垫,但特定微生物过程的贡献仍不清楚。在这里,我们将基因组解析的元转录组学和现场规模生物垫的氧分析相结合,以告知用一套药物修正的实验室抑制微观世界。我们的分析揭示了一个动态的表层,该表层包含有氧-缺氧循环和同时进行光合、硝化和反硝化微生物转录,跨越九个细菌门,未合并的真核生物支架表明硅藻占主导地位。在实验室中,光合作用、硝化、通过在存在和不存在光和氮循环酶抑制剂的情况下培养好氧和缺氧微观世界,可以广泛地将反硝化和反硝化解耦。通过将微观世界抑制数据与现场规模宏基因组学相结合,我们推断微生物进化枝负责与膜结合硝酸盐还原酶活性(恩曲他滨、甲氧苄啶和阿替洛尔)、一氧化二氮还原(甲氧苄啶)、氨氧化(甲氧苄啶和恩曲他滨)相关的生物转化,和光合作用(美托洛尔)。对阿替洛尔和恩曲他滨转化产物的监测证实了抑制对生物转化具有特异性,并强调了振荡氧化还原环境对阿替洛尔酸进一步转化的价值。
更新日期:2022-10-05
down
wechat
bug